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Abstract

The Ocean Grazer is a novel ocean energy collection and storage device that has been proposed
by the University of Groningen. Its core technology is a wave energy converter that differs from
others by its adaptability and capacity to store energy. This thesis presents a modular model-
ling for the Ocean Grazer’s power take-off (PTO) system based on the port-Hamiltonian (PH)
framework, which enables energy-based analysis and control of the system. The project aims to
obtain a reduced model of the PTO system in order to speed up the computation of control sig-
nals, which are essential for the optimal operation of the device. The model is developed in the
MATLAB/Simulink environment.

The first part of this thesis is dedicated to the modelling of a point-absorber (PA) device, which is
the main unit of the PTO system. It is based on a new modelling concept introduced in a previous
work, consisting on breaking down the PA into a moving water mass, a buoy-piston ensemble and
a pumping hydraulic system. The model is translated into PH framework and simulation results
are compared with previously developed models. The second part deals with the modelling of
an array point-absorber devices. First, a reference model is presented, acquiring good agreement
with validated models. Afterwards, it is described the identification of the parameters that define
the interconnection between the water elements in the present model.
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a source of discussion, guidance and entertainment throughout the research process.

Modular modelling for the power take-off system of a wave energy converter v





Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Renewable energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Ocean Grazer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Multi-pump multi-piston power take-off system . . . . . . . . . . . . . . . . 3

1.3 Goals of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical background 5

2.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Sea waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Dynamical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Mechanical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Fluid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 The port-Hamiltonian framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Point absorber model 13

3.1 Model considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Floater motion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Moving water body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Buoy-piston ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.4 Pumping hydraulic system . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.5 Switched buoy-piston-pump system . . . . . . . . . . . . . . . . . . . . . . . 21

Modular modelling for the power take-off system of a wave energy converter vii



CONTENTS

3.2 Power take-off system in the PH framework . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Mechanical subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Hydraulic subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Interconnected system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Mechanical subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Hydraulic subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Array of point absorbers model 37

4.1 Model considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Reference model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Parameter identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusions and further work 45

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47

Appendix 49

A MATLAB code 49

A.1 Mechanical subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1.1 Spring-damper model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1.2 Spring-damper-inerter model . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.2 Hydraulic subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.3 Array of point absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.3.1 Reference model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.3.2 Parameter identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii Report



List of Figures

1.1 Electricity generation by renewable energy in the EU (2015) . . . . . . . . . . . . . 1

1.2 World availability of wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Diagram of significant wave heights and characteristic periods . . . . . . . . . . . . 2

1.4 Ocean Grazer device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Schematic representation of the MP2PTO system . . . . . . . . . . . . . . . . . . . 4

2.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Harmonic wave properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Symbolic diagram of a spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Symbolic diagram of a damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Symbolic diagram of a fluid capacitor . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Symbolic diagram of a fluid inertor . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Symbolic diagram of a fluid resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Ideal fluid sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 Port-Hamiltonian system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Excitation force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Water mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Spring-damper connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Stiffness, k’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Symbolic diagram of an inerter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Circuit symbols and correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7 Spring-damper-inerter connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.8 Pumping hydraulic subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.9 Interconnected point-absorber system schematic . . . . . . . . . . . . . . . . . . . . 22

3.10 Excitation force and wave and buoy displacements . . . . . . . . . . . . . . . . . . 28

Modular modelling for the power take-off system of a wave energy converter ix



LIST OF FIGURES

3.11 Energy evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.12 Energy evolution for Fw = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.13 Extracted energy for different values of kPTO and dPTO . . . . . . . . . . . . . . . 30

3.14 Wave excitation force Fw for different wave periods and heights . . . . . . . . . . . 30

3.15 Wave excitation force Fw for H = 1 m . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.16 Single floater heave RAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.17 Piston displacement and velocity, pumping force and pumping power . . . . . . . . 32

3.18 Pumping force terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.19 Flow rate, pressure difference between reservoirs and hydraulic head . . . . . . . . 34

3.20 Kinetic and potential energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.21 Pumping and potential power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Complete PTO schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Free body diagrams of the water bodies for 3 PAs . . . . . . . . . . . . . . . . . . . 38

4.3 Buoy displacement for different frequencies . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Overall capture power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Capture power distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Waves and floaters displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Floater 10 displacement and error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Interconnection force between PAs 9 and 10 . . . . . . . . . . . . . . . . . . . . . . 44

A.1 Mechanical model in Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.2 Hydraulic model in Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.3 Point absorbers 9 and 10 in Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.4 Point absorbers 9 and 10 connection in Simulink . . . . . . . . . . . . . . . . . . . 59

x Report



List of Tables

3.1 Mechanical model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Wave parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Hydraulic model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Piston motion parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Floater blanket parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Modular modelling for the power take-off system of a wave energy converter xi





Chapter 1

Introduction

1.1 Renewable energy

Nowadays, roughly 80% of the world primary energy demand is satisfied by fossil fuels, where oil
is the leading energy resource. However, there are some challenges that need to be addressed,
such as climate change, increased oil prices, issues of security of supply and world population
growth. Hence, much attention has turned to renewable energy sources to fulfill future increasing
world energy demand. Wind energy has had considerable proliferation, while other sources such
as biomass, solar and tidal have enjoyed slightly less deployment.

The role of renewable energies continues to increase in the generation of electricity, being the contri-
bution to the world electricity production by non-hydroelectric renewables of 6,5% in 2014 (EIA).
Figure 1.1 shows that most of the electricity generation based on renewable energy sources is
produced by hydraulic and wind energies, but only 0,05% is obtained from ocean energy. Wave
energy has great potential and therefore it can contribute significantly to the proportion of renew-
able energy in the global energy share.

Figure 1.1: Electricity generation by renewable energy in the EU (2015) (Observ’ER, 2016)

The main reason for the lack of proliferation of wave energy is that harnessing the irregular motion
of the sea is not as straightforward as, for example, extracting energy from the wind. The relative
immaturity of wave-energy technology can be noticed by the existence of just a few commercially
available Wave Energy Converters (WECs) as well as by the contrast in their operational principles.

Modular modelling for the power take-off system of a wave energy converter 1



CHAPTER 1. INTRODUCTION

Wave energy can be considered as a concentrated form of solar energy. Winds are generated by
the differential heating of earth and, as they pass over open bodies of water, some of their energy
is used to create waves. Energy is stored in waves as both potential energy (in the mass of water
displaced from the mean sea level) and kinetic energy (in the motion of the water particles).

The global wave power resource in deep water is estimated to be 1-10 TW (Thorpe, 2010). The
world distribution of wave energy is depicted in Fig. 1.2, where it can be seen that some countries
with high dependence on imported fossil fuels such as Ireland have access to significant wave-energy
resources (70 kW/m of wave crest). Furthermore, Ireland has the potential to capture 14 TWh of
wave energy per year, which is more than half of its annual energy consumption (Ringwood et al.,
2014).

Figure 1.2: World availability of wave energy (Straume, 2014)

Inherent variability in sea conditions (Fig. 1.3) determines the characteristics of the incoming
wave, such that each wave may differ significantly from those preceding or following it. Therefore,
the WEC should be able to extract energy from both small and large waves for a range of periods.

Figure 1.3: Diagram of significant wave heights and characteristic periods for the Atlantic Marine
Energy Test Site in Belmullet, Ireland (Ringwood et al., 2014)
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CHAPTER 1. INTRODUCTION

1.2 Ocean Grazer

1.2.1 Introduction

The Ocean Grazer is a novel ocean energy collection and storage device that is being developed
at the University of Groningen. It is designed to extract and store multiple forms of ocean energy
and it consists of several power take-off (PTO) systems, being wave energy the primary source of
energy. The device, shown in Fig. 1.4, is a large floating platform located in the ocean more than
50 kilometers off-shore. One single system is expected to produce between 220 to 270 GWh/year,
enough energy to fulfill the electricity demand of around 70.000 households. Furthermore, the
system will have a loss-free storage capacity of around 800 MWh (Vakis et al., 2014).

Figure 1.4: The Ocean Grazer submerged (left) and unsubmerged without top platform (right)

The structure is designed to have a diameter of approximately 435 meters and a total height
of 255 meters, of which 20 meters above the average seawater level. Under the water surface
there would be two reservoirs connected through multiple pumps containing multiple pistons. Its
core technology, contributing to about 80% of the energy generation, is a wave energy harvesting
device termed the multi-pump multi-piston power take-off (MP2PTO) system, that differs from
other WECs by its adaptability and capacity to store energy.

1.2.2 Multi-pump multi-piston power take-off system

The MP2PTO, depicted in Fig. 1.5, is based on a point absorber design with the capability to
store loss-free potential energy that can be transformed into electricity via a turbine. The system
is powered by some interconnected buoys, termed a floater blanket, that follow the motion of the
ocean waves and where each floater can be connected to multiple pistons to pump fluid from the
lower reservoir to the upper reservoir.

This device has the advantage of decoupling the electricity production from the availability of
wave energy. Thus, the upper reservoir acts as an energy buffer that can be used to close the gap
between energy supply and demand. The other important feature of the MP2PTO system is that
it is able to adapt itself to maximize the energy extraction for waves ranging in height from 1 to
12 meters and for periods between 4 and 20 seconds. It is claimed to have an average extraction
efficiency of about 90% for the aforementioned range (van Rooij, 2015).

Modular modelling for the power take-off system of a wave energy converter 3
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Figure 1.5: Schematic representation of the MP2PTO system

1.3 Goals of the thesis

Previous work has demonstrated the successful potential use of a variable-load control for a multi-
piston pump. However, the computation time required can very high, making the deployment
in the real device unfeasible. Therefore, it is still a great challenge to develop efficient control
strategies for an Ocean Grazer device consisting of hundreds of interconnected floater elements.
Control in wave energy applications may rely upon an accurate and high fidelity hydrodynamic
model, but working directly with it would increase the complexity and computational cost of the
model. Hence, an efficient and accurately enough model is needed.

A time-domain model for ten interconnected floaters has been developed and validated against
experimental results and a previous numerical model in (Wei et al., 2017a). The problem that
presents this model is that is time consuming: it takes around one day to run 200 seconds of
physical time. Recently, in (Wei et al., 2017b), a frequency-domain model with a simple spring-
damper PTO system has been proposed, obtaining a considerable reduction of the computation
time required.

In (Barradas-Berglind et al., 2016a), it is proposed a first model of one point absorber device
based on the port-Hamiltonian (PH) framework, that allows energy-based analysis and control of
the system. Furthermore, the modularity that PH framework offers can be useful to interconnect
several point-absorber devices in order to model the full MP2PTO system.

Therefore, the main contributions of this thesis can be summarized in:

1. Improvement of the previous port-Hamiltonian model

2. Extension of the model to obtain one-column floater blanket

3. Simulations results and analysis of the system behaviour

The remainder of the thesis is structured as follows. Chapter 2 introduces some theoretical back-
ground. In Chapter 3, it is presented the model of a point absorber and simulation results are
provided. Subsequently, Chapter 4 describes the model of an array of point-absorber units and
the performance of the system is analysed. Finally, conclusions and further work are presented in
Chapter 5.
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Chapter 2

Theoretical background

In this chapter one can find, firstly, the coordinate system and corresponding nomenclature em-
ployed throughout the thesis. Later, it is provided some important information regarding sea
waves as well as the theory related with the elements used to develop the model. Lastly, it is
introduced the port-Hamiltonian framework, in which we lean on to model the PTO system.

2.1 Coordinate system

Figure 2.1 illustrates a 3D floating point absorber subject to incoming waves propagating in the
+X direction. The six degrees of freedom are defined as: surge, sway, heave, roll, pitch and yaw.
Surge, sway and heave represent the translation motions along the X, Y and Z axes, respectively.
Roll, pitch and yaw are the rotation motions along the X, Y and Z axes, respectively.

Figure 2.1: Coordinate system (WEC-Sim documentation)

2.2 Sea waves

Sea waves can be generated due to many factors such as wind, an earthquake, astronomical forces
or floating structures. Depending on the wavelength, we can distinguish between deep water waves,
where the seabed has a negligible effect on the wave, and shallow water waves, if the seabed has
a relevant influence on the wave.

Modular modelling for the power take-off system of a wave energy converter 5
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Wind waves, especially, are very irregular. Nevertheless, they can be considered as a superposition
of simple regular waves, each with its own amplitude ζa, wavelength λ, period T and direction of
propagation (see Fig. 2.2). The highest point of the wave is the crest and the lowest point is the
trough. The amplitude of the wave is the distance from the still water level to the crest and is
equal to half of the height, which is the distance between the crest and the trough. The horizontal
distance in the direction of wave propagation between any two successive wave crests is the wave
length and the distance along the time axis is the wave period.

Figure 2.2: Harmonic wave properties (Journée and Massie, 2001)

Thus, each simple wave can be described by

ζ(x, t) = ζa cos(kx− ωt) (2.1)

with ζ(x, t) the surface elevation in a certain time t and distance x, ζa = H/2 the amplitude,
k = 2π/λ the wave number and ω = 2π/T the frequency. Wave frequency is related to wave
number by the dispersion relation

ω2 = gk tanh(kh), (2.2)

where h is the water depth and g is the acceleration of gravity.

The wave moves one wave length during one period so that its speed or phase velocity c is

c =
λ

T
. (2.3)

Considering deep water conditions, the particles beneath a wave essentially describe circular orbits,
so that their velocities in the x− and z− directions are described by

vx = ζaω cos(kx− ωt) (2.4a)

vz = ζaω sin(kx− ωt). (2.4b)

The average energy content per horizontal area of sea surface as derived from linear wave the-
ory (Falnes, 2002) is given by

E =
ρswg

16
H2
m0 [J/m2], (2.5)

where ρsw is the sea water density and Hm0 is the significant wave height, which can be replaced
by
√

2H for monochromatic waves, i.e., a sinusoidal wave with a single frequency and phase. The
total wave energy is comprised of kinetic and potential energies, contributing each one to half of
the total value:

Ek = Ep =
ρswg

32
H2
m0 [J/m2]. (2.6)
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CHAPTER 2. THEORETICAL BACKGROUND

2.3 Dynamical modelling

In this section, the dynamical models of the basic elements of mechanical and fluid systems are
presented. This provides the basis to construct the point absorber system that will be described
in Chapter 3.

2.3.1 Mechanical systems

Mechanical systems can be modelled combining three basic ideal elements: masses, springs and
dampers.

Masses

Based on Newton’s second law, the general equation for an ideal mass m is

n∑
i=1

Fi = m
d2x

dt
, (2.7)

where x is the position of the mass and Fi are the applied forces acting upon the mass in the
x direction. One mass can be considered as a storage element in terms of kinetic energy if it is
moving with a certain velocity

Ek,m =
1

2
mv2, (2.8)

and in terms of potential energy depending on the height with respect to a reference position

Ep,m = mg(h− h0). (2.9)

Springs

An ideal spring (shown in Fig. 2.3), could be defined as a non-mass element that exerts an opposite
force as it is stretched or compressed from its rest position, following Hooke’s law

Fk = k(x− x0) = k∆x, (2.10)

where k is the stiffness of the spring, x is the current length of the spring and x0 is its free length,
i.e., the length of the spring when Fk = 0. An ideal translational spring stores potential energy
as given by

Ep,k =
1

2
k∆x2. (2.11)

Fk Fk

x

Figure 2.3: Symbolic diagram of a spring
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Dampers

Unlike masses and springs, dampers (depicted in Fig. 2.4) do not store energy but dissipate it.
The elemental equation for an ideal damper is

Fb = b(v2 − v1), (2.12)

where b is the damping coefficient and (v2 − v1) is the relative velocity between its ends. For a
damper, the energy dissipated over a time interval is the integral of the instantaneous dissipation
power

Ed,b =

∫ t2

t1

Fb(v2 − v1) dt =

∫ t2

t1

b(v2 − v1)2 dt. (2.13)

Fb Fb

v1 v2

Figure 2.4: Symbolic diagram of a damper

2.3.2 Fluid systems

Fluid systems can be modelled through the following elements: fluid capacitors, fluid inertors,
fluid resistors and fluid sources.

Fluid capacitors

Storage tanks and reservoirs work as fluid capacitors (shown in Fig. 2.5) by accumulating the inlet
flow, similarly to the process of charging a capacitor in electrical systems.

Pr

P1
Q C

Cf

Figure 2.5: Symbolic diagram of a fluid capacitor

The elemental equation for an ideal fluid capacitor is

Qc = Cf
dP1r

dt
, (2.14)

where Qc is the volume rate of flow into the capacitor, Cf is the fluid capacitance and P1r is
the fluid pressure in the capacitor referred to a reference pressure Pr. For an open reservoir, the
capacitance is defined by

Cf =
A

ρg
, (2.15)
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CHAPTER 2. THEORETICAL BACKGROUND

where A is the cross-sectional area and ρ is the fluid density. The energy stored in a capacitor is
potential energy and is related to the work required for increasing the pressure of the fluid filling
the capacitor

Ep,c =
Cf
2
P 2

1r. (2.16)

Fluid inertors

Fluid inertors (depicted in Fig. 2.6) indicate the required gradient pressure in a line for producing
the change of flow rate involved.

P2P1
Q I

I

Figure 2.6: Symbolic diagram of a fluid inertor

The elemental equation for an inertor is

P12 = I
dQI
dt

, (2.17)

where P12 is the pressure difference between points 1 and 2, I is called the fluid inertance and QI
is the volume flow rate. For frictionless incompressible flow in an uniform conduct, the inertance
I is defined by

I =
ρL

A
, (2.18)

where ρ is the mass density of the fluid, A is the cross-sectional area of the pipe and L is the
length of the passage. Inertors store kinetic energy due to the movement of the fluid inside the
duct:

Ek,I =
1

2
IQI

2. (2.19)

Fluid resistors

Fluid resistance appears in small conducts and usually is consequence of fluid viscosity, which
impedes the flow and requires significant pressure gradients. The symbolic diagram of a fluid
resistor is shown in Figure 2.7.

P2P1
Q R

Rf

Figure 2.7: Symbolic diagram of a fluid resistor

The elemental equation of an ideal fluid resistor is

P12 = RfQR, (2.20)

where P12 is the pressure drop in the resistor, Rf is the fluid resistance and QR is the flow rate.
A fluid resistor dissipates energy as given by

dEd,R
dt

= RfQ
2
R. (2.21)
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Fluid sources

The input elements in a fluid system are shown Fig. 2.8. An ideal pressure source is able to deliver
the indicated pressure, regardless of the flow rate required, whereas an ideal flow source delivers
the indicated flow rate, independent of the pressure required.

Figure 2.8: Ideal fluid sources: (a) pressure source and (b) flow source (Kulakowski et al., 2007)

2.4 The port-Hamiltonian framework

The port-Hamiltonian (PH) framework is based on the description of a system in terms of energy
variables, their interconnection structure and power ports. In fact, the framework of port-based
modelling and port-Hamiltonian systems emerges as a general theory for the modelling of complex
physical systems from many areas of engineering. Moreover, because of its emphasis on energy and
power as the common communication language, PH theory allows the combination of systems from
different physical domains (mechanical, electro-magnetic, hydraulic, etc.). Additionally, apart
from offering a systematic framework for modelling and analysis of multi-physics systems, it also
provides a natural starting point for control, especially in the non-linear case, as the storage
function can be used as Lyapunov function.

In general, in port-based modelling, a physical system is described by the interconnection of three
types of ideal components: energy-storing elements (inductors, capacitors, masses or springs),
energy-dissipating elements (resistors or dampers) and energy-routing elements (transformers,
gyrators or ideal constraints) (van der Schaft and Jeltsema, 2014). The energy-storing elements and
the energy-dissipating elements are linked to a central interconnection (energy-routing) structure.
This linking is done through pairs of equally dimensioned vectors of flow (f) and effort (e) variables;
a pair (f ,e) of vectors of flow and effort variables is called a port. Figure 2.9 shows three ports:
the port (fS ,eS) linking to an energy storage element, the port (fR,eR) corresponding to an
energy-dissipation element and the external port (fP ,eP ), by which the system interacts with its
environment (including controller action).

Figure 2.9: Port-Hamiltonian system (van der Schaft and Jeltsema, 2014)

An important particular case of port-Hamiltonian system is the class of input-state-output port-
Hamiltonian system, which is described by

Σ =

{
ẋ = [J(x)−R(x)] ∂H(x)

∂x + g(x)u

y = g(x)> ∂H(x)
∂x

(2.22)
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with states x ∈ RN , skew-symmetric matrix J(x) ∈ RN×N , positive semi-definite matrix R(x) ∈
RN×N that specifies the resistive structure and Hamiltonian H(x) ∈ R representing the total
energy of the system. The matrix g(x) ∈ RN×M weights the action of the control inputs u ∈ RM
on the system and y ∈ RM is output of the system, with M ≤ N ; the pair (u, y) form a power
port.

For example, a class of mechanical systems wih n degrees of freedom (N = 2n) can be described
as

Σ =


[
ϕ̇

ṗϕ

]
=

[
0n×n In×n

−In×n −D(ϕ, pϕ)

] ∂H(ϕ,pϕ)
∂ϕ

∂H(ϕ,pϕ)
∂pϕ

+

[
0n×n

G(ϕ)

]
u

y = G(ϕ)
> ∂H(ϕ,pϕ)

∂pϕ
,

(2.23)

with generalized configuration coordinates ϕ ∈ Rn, generalized momenta pϕ ∈ Rn, damping matrix

D(ϕ, pϕ) ∈ Rn×n, where D(ϕ, pϕ) = D(ϕ, pϕ)
> ≥ 0, output y ∈ Rm, input u ∈ Rm and the input

matrix G(ϕ) ∈ Rn×m. Accordingly, the corresponding Hamiltonian is

H(ϕ, pϕ) =
1

2
pϕ
>M(ϕ)

−1
pϕ + V (ϕ), (2.24)

being M(ϕ) = M(ϕ)
>
> 0 the generalized mass matrix and V (ϕ) the potential energy.

Energy-routing devices may exchange between different types of energy. A transformer is an
element linking two scalar bonds with flow and effort variables (f1,e1) ∈ R2 and (f2,e2) ∈ R2 by

f2 = αf1

e1 = −αe2

(2.25)

with α constant, called the transformer ratio. Similarly, a gyrator is given by the relations

f2 = βf1

βe1 = −e2.
(2.26)

Energy-routing elements are instrumental to achieve meaningful interconnection of systems. This
is an important aspect that will be further discussed in Chapter 3 specifically for the interconnec-
tion between the mechanical and fluid subsystems of the PA system.

Modular modelling for the power take-off system of a wave energy converter 11





Chapter 3

Point absorber model

This chapter is organized as follows. Section 3.1 presents the model of a point absorber. Sub-
sequently, the point-absorber system in the PH framework is described in Section 3.2. Lastly,
simulation results are provided in Section 3.3.

3.1 Model considered

The point absorber can be divided in the following subsystems: a moving water body representing
the wave, a mechanical subsystem consisting of a buoy-piston ensemble that interacts with the
water body, a hydraulic subsystem that pumps internal fluid from a lower to an upper reservoir and
a switching and coupling stage that allows energy transfer from the mechanical to the hydraulic
system and prevents backflow from the upper to the lower reservoir.

In this section, first it is presented a one-degree-of-freedom (1 DOF) dynamical model of a pris-
matic buoy under the excitation of a simple harmonic wave. Secondly, a description of the hy-
draulic system is provided and finally the coupling stage that interconnects the previous systems
is presented.

3.1.1 Floater motion equation

The general motion equation of a single floater follows Newton’s second law:

mq̈ =
∑

F = Fe + Fr + Fhs + Fp, (3.1)

where m is the mass of the floater, q is the vertical (heave) displacement of the buoy, Fe is the
wave excitation force, Fr is the radiation force, Fhs is the restoring force and Fp is the pumping
force coming from the hydraulic system. The radiation force and the restoring force are defined
respectively as

Fr = −ma(ω)q̈ + b(ω)q̇ (3.2)

and
Fhs = −kq, (3.3)

where ma and b are the frequency-dependent added-mass and damping coefficients, respectively,
and k corresponds to the hydrostatic stiffness. The hydrodynamic coefficients required for the
model −ma, b− can be numerically obtained from the Boundary Element Method (BEM) open-
source solver Nemoh (Wei et al., 2017b) and are only dependent on the fluid density, the dimensions
of the floater and the wave frequency.
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Hence, Equation (3.1) turns into

(m+ma) q̈ + bq̇ + kq = Fe + Fp. (3.4)

The excitation force Fe applied to the floater can be defined as given in (3.5), which includes
pressure, inertial and damping contributions (Barradas-Berglind et al., 2016b).

Fe = (maη̈ +Bη̇ +Kη) e−kwT , (3.5)

where T is the buoy submersion and kw = 2π/λw is the wave number for a wave length λw.
Comparing the amplitude of the excitation force calculated from (3.5) with the value obtained
from Nemoh for 1 m wave height (Fig. 3.1), it can be seen that the major difference happens for
high frequency values. This is due to the fact that diffraction effects become more important for
short-period waves.
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Figure 3.1: Excitation force, Fe

The wave force given in (3.5) can also be expressed in terms of an effective wave elevation as done
in (Journée and Massie, 2001):

Fe =
(
maη̈e

−kwT +Bη̇e−kwT +Kηe−kwT
)

= (maη̈
∗ +Bη̇∗ +Kη∗) . (3.6)

Considering a constant draft, the excitation force becomes independent of the floater motion, being
only function of the wave. In this work, it is assumed that half of the floater is initially submerged
in the water.

If having a sinusoidal wave defined as

η = −H
2

cos(ωt+ φ) (3.7a)

η̇ =
ωH

2
sin(ωt+ φ) (3.7b)

η̈ =
ω2H

2
cos(ωt+ φ), (3.7c)

where H is the wave height and ω the wave frequency, the excitation force given in (3.5) can be
expressed as

Fe =
H

2

[
(maω

2 −K) cos(ωt+ φ) +Bω sin(ωt+ φ)
]
e−kwT . (3.8)
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Hence, the amplitude of the excitation force is linear with respect to the wave height H.

Combining (3.4) and (3.6) provides the following equation of motion for the floater

(m+ma) q̈ − bq̇ − kq = (maη̈
∗ + bη̇∗ + kη∗) + Fp, (3.9)

and using the relative motion principle, it can be rewritten as

mq̈ = ma(η̈∗ − q̈) + b(η̇∗ − q̇) + k(η∗ − q)︸ ︷︷ ︸
Interconnectionforce

+Fp. (3.10)

3.1.2 Moving water body

In order to model the wave-floater interaction in our PA, it is considered a mechanical model of
the wave by a simple moving water body described by

m1η̈ = Fb + Fw, (3.11)

where η is the vertical displacement of the water body, m1 represents the equivalent mass of the
moving water body, Fb corresponds to the forces due to the interaction of the buoy-piston with
the moving water mass and Fw is the external force applied to the water body to generate its
movement.

Considering deep water conditions, the velocity for heave and surge motions is described by
vz =

ωH

2
sin(ωt+ φ) Heave

vx = −ωH
2

cos(ωt+ φ) Surge.

(3.12)

Introducing these expressions into the mechanical equation of kinetic energy yields

Ek =
1

2
m1(vx

2 + vz
2) =

1

8
m1ω

2H2 (3.13)

and taking into account that kinetic energy is half of the total energy water content

Ek =
Aw
16

ρswgH
2 (3.14)

leads to the following expression for the mass of the water body

m1 =
Awρswg

2ω2
. (3.15)

Note that is dependent on wave frequency, as shown in Fig. 3.2 for a water area Aw = 49 m2 and
sea water density ρsw = 1025 kg/m3.

3.1.3 Buoy-piston ensemble

For simplicity, it is assumed a rigid connection between the buoy and the piston, meaning that
they are treated as a single body mass. The dynamics of the buoy-piston ensemble are given by

m2q̈ = −Fb + Fp, (3.16)

where q is the displacement of the buoy-piston mass relative to the equilibrium position, m2 is the
equivalent buoy-piston mass, Fb corresponds to the interaction force with the wave and Fp is the
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Figure 3.2: Water mass, m1

pumping force coming from the hydraulic system. In the present work, for the simulation of the
mechanical subsystem a simple PTO is considered, consisting on a linear spring-damper system,
as shown in (3.17)1. The description of the hydraulic Fp will be given in the next section.

Fp = −kPTO · q − dPTO · q̇, (3.17)

where kPTO and dPTO are the stiffness and damping of the PTO, respectively.

In order to model Fb, a first approach considered is to assume it is simply proportional to the
relative displacement and relative velocity between m1 and m2:

Fb = −k′(η − q)− d′(η̇ − q̇), (3.18)

where k′ and d′ are constant parameters. The schematics of the described system are depicted in
Fig. 3.3.

m2

m1

Fw

Fp

k’ d’

η

q

Figure 3.3: Spring-damper connection

These parameters k′ and d′ have to be obtained. The method used is Least Squares Estimation,
as presented in the following.

1In the OG-WEC, the pumping force presents a switching behaviour as described in Section 3.1.5.
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Introducing (3.17) and (3.18) in (3.16) gives

m2q̈ = k′(η − q) + d′(η̇ − q̇)− kPTO · q − dPTO · q̇

and introducing a new variable v defined as

v = q̇

v̇ = q̈,

Equation (3.16) becomes

m2v̇ = k′(η − q) + d′(η̇ − v)− kPTO · q − dPTO · v.

Aplying an Euler discretization to the previous expression makes it possible to write

v̇ ≈ vk+1 − vk
Ts

m2
vk+1 − vk

Ts
+ kPTO · qk + dPTO · vk = k′(ηk − qk) + d′(η̇k − vk)[

m2
vk+1 − vk

Ts
+ kPTO · qk + dPTO · vk

]
︸ ︷︷ ︸

Y

=
[
ηk − qk η̇k − vk

]
︸ ︷︷ ︸

Φ

·
[
k′

d′

]
︸ ︷︷ ︸

θ

Y = Φ · θ

The best estimation of the parameters can be found by

θ̂ = (Φ>Φ)−1 · Φ> · Y

On the other hand, the same result can be obtained analytically. Assuming η and q to be sinusoidal
functions, it can be written

η̈ = −ω2η

q̈ = −ω2q

allowing to express the interconnection force in (3.10) as

ma(η̈ − q̈) + b(η̇ − q̇) + k(η − q) = [k −maω
2]︸ ︷︷ ︸

k′

·(η − q) + b︸︷︷︸
d′

(η̇ − q̇) (3.19)

obtaining the same parameters k′ and d′ than with the Least Squares method. Since ma depends
on frequency, k′ is also frequency-dependent, as shown in Fig. 3.4.
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Figure 3.4: Stiffness, k’

Another approach is to introduce a new interconnection element between m1 and m2: the in-
erter (Smith, 2002). The inerter (shown in Fig. 3.5) is defined as a mechanical two-node (two-
terminal), one-port device with the property that the equal and opposite force applied at the nodes
is proportional to the relative acceleration between the nodes. That is

F = b(v̇2 − v̇1) (3.20)

being the constant of proportionality b the intertance with units of kilograms.

F F

v1 v2

Figure 3.5: Symbolic diagram of an inerter

This new element is presented as the two-terminal device equivalent to the electrical capacitor
(see Fig. 3.6).

Figure 3.6: Circuit symbols and correspondences (Smith, 2002)
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The stored energy in the inerter is defined as

E =
1

2
b(v2 − v1)2. (3.21)

Including this new element into the connection force leads to Equation (3.22), which is represented
in Fig. 3.7.

Fb = −k(η − q)− d(η̇ − q̇)−ma(η̈ − q̈). (3.22)

Note that this equation is the same as in (3.10)2.

m1

Fw

Fp

k

d

η

q

ma

m2

Figure 3.7: Spring-damper-inerter connection

3.1.4 Pumping hydraulic system

Original model

The hydraulic system consists of a lower reservoir and an upper reservoir with cross-sectional
areas Al and Au, respectively, connected through a pipe with length L16. This connection can
be described by two inertors I12, I56 > 0, two resistors R23, R45 > 0 and a pressure source P34 =
Ps (Barradas-Berglind et al., 2016a), as depicted in Figure 3.8.

To satisfy the compatibility law, the pressures in the system are related by

P1 − P6 = P16 = P12 + P23 + Ps + P45 + P56 (3.23)

which is equivalent to
Ps = P16 + P21 + P32 + P54 + P65. (3.24)

Describing the individual pressures at each component, the pressures in the inertors can be written
as

P21 =
ρL12

Ac
Q̇+ gρL12 = I12Q̇+ gρL12 (3.25a)

P65 =
ρL56

Ac
Q̇+ gρL56 = I56Q̇+ gρL56 (3.25b)

2Recall that Fb is negative in (3.16).
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Figure 3.8: Pumping hydraulic subsystem

and the pressures in the resistors are given by

P32 =
8µπL23

A2
c

Q+ gρL23 = R23Q+ gρL23 (3.26a)

P54 =
8µπL45

A2
c

Q+ gρL45 = R45Q+ gρL45, (3.26b)

with L12, L23, L45, L56 being the water column heights of the system. Inserting (3.25) and (3.26)
in (3.24) yields

IQ̇ = −RQ+ Ps − P16 − ρgL16 (3.27)

with the equivalent intertance I = I12 + I56, the equivalent resistance R = R23 + R45 and the
equivalent water column height L16 = L12 + L23 + L45 + L56.

Combining the above equations into the pumping force expression gives

Fp = AcPs = AcP16 + ρ(L12 + L56)Q̇+ gρAc(L12 + L23 + L45 + L56) +
8µπ(L23 + L45)

Ac
Q

= AcP16 + ρ
L16

2
Q̇+ gρAcL16 +

8µπ

Ac

L16

2
Q = AcP16 + IAcQ̇+ gρAcL16 +RAcQ.

(3.28)

Furthermore, the dynamics of P16 can be written as the difference between the change in the
pressures at the upper and lower reservoirs as

Ṗ16 =
ρg

AU
Q−

(
− ρg
AL

Q

)
=

1

C13
Q−

(
− 1

C46
Q

)
(3.29)

with the upper reservoir capacitance 1/C13 and lower reservoir capacitance 1/C46, or more com-
pactly as

CṖ16 = Q (3.30)

with the equivalent capacitance C = C13C46

C13+C46
.
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Additional terms

Comparing this model with the SPP hydraulic model proposed in (Vakis and Anagnostopoulos,
2016), the latter presents the following major differences:

1. The pressure gradient between points 1 and 2 includes an additional term involving the
dynamically varying hydraulic head in the upper reservoir calculated as a function of pressure
at point 1, i.e.

P21 =
ρ(L12 + Lu)

Ac
Q̇+ gρL12, Lu =

p1

ρg
(3.31)

2. The pressure gradient between points 5 and 6 includes an additional term ρq̇2, representing
the change in momentum needed to accelerate the working fluid that enters the cylinder
from the lower reservoir in order to attain the velocity of the moving fluid column.

3. The pressure gradient is described by two inertors, neglecting losses due to the wall friction,
instead of the combination of inertor-resistor presented in the previous section.

If including the first two terms described, the expression for the pumping force becomes

Fp = AcP16 + IAcQ̇+ ρLuQ̇︸ ︷︷ ︸
First term

+gρAcL16 +RAcQ+ Acρq̇
2︸ ︷︷ ︸

Second term

(3.32)

or equivalently,

Ps = P16 +

(
I +

ρLu
Ac

)
Q̇+ gρL16 +RQ+ ρq̇2,

which taking into account that Q = Acq̇, it can be rewritten as

Ps = P16 +

(
I +

ρLu
Ac

)
Q̇+ gρL16 +RQ+

ρQ2

Ac2
. (3.33)

3.1.5 Switched buoy-piston-pump system3

The use of piston flaps and check valves introduces a switching behaviour in the point-absorber
system. When q̇ > 0 (the piston is moving upward), the pump is activated such that Q > 0 and
Ps > 0. Otherwise, both Q = 0 and Ps = 0 (the piston is moving downward). This switching
mechanism in the pumping system enables to: (i) transfer kinetic energy from the water body into
potential energy of the working fluid in the upstroke and (ii) prevent the reverse energy transfer
during the downstroke.

Therefore, when the working fluid is allowed to flow, we have the coupling Q = Acq̇ and Fp = AcPs.
Hence, when q̇ > 0, combining (3.27), (3.30) and (3.16) gives the coupled buoy-piston-pump system

(m2 + IA2
c)q̈ = −Fb −RA2

c q̇ −AcP16 − gρL16Ac (3.34a)

CṖ16 = Acq̇. (3.34b)

On the other hand, when q̇ ≤ 0, we have

m2q̈ = −Fb (3.35a)

CṖ16 = 0 (3.35b)

3In this section, it is presented the interconnection stage between the mechanical and hydraulic subsystems,
therefore here it is not considered the spring-damper PTO force but the real pumping force coming from the
hydraulic system.

Modular modelling for the power take-off system of a wave energy converter 21



CHAPTER 3. POINT ABSORBER MODEL

such that the buoy-piston decouples from the pumping system. Equations (3.34) and (3.35)
together with (3.11) define the basic operation of a single PA unit.

Besides, due to the significant hydraulic head difference between the upper reservoir and the
lower reservoir, the pumping force can be very large during the upstroke and becomes zero during
the downstroke. This instantaneously switching behaviour may introduce discontinuities to the
system; to avoid it, it can be used exponential growth and decay terms to calculate the fluid
column mass (Vakis and Anagnostopoulos, 2016) or a dynamically varying area of the piston (Wei
et al., 2017a).

Therefore, taking into account all the previous systems, the point-absorber device can be described
as shown in Fig. 3.9, such that it is a modular element that can be connected to other point
absorbers.

Moving 

water 

body

Buoy-

piston 

ensemble

Pumping 

system
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Figure 3.9: Interconnected point-absorber (PA) system ΣPA schematic with its respective subsys-
tems: the mechanical subsystem Σm, the hydraulic subsystem Σh and the coupling stage between
them. Furthermore, the potential connection to other PAs is shown through hydrodynamics and
mechanical couplings (Barradas-Berglind et al., 2016a)

3.2 Power take-off system in the PH framework

In this section, it is described the mechanical and hydraulic subsystems (Σm and Σh respectively)
in the PH framework. Afterwards, it is presented the interconnection stage, allowing the transfer
of kinetic energy from the mechanical subsystem to the hydraulic subsystem and impeding the
reverse energy transfer. Lastly, it is shown the passivity property of the interconnected system
and the correct storage of potential energy.

3.2.1 Mechanical subsystem

Spring-damper connection

Consider the water body displacement η in (3.11) and the buoy-piston displacement in (3.16) as
the generalized coordinates of the mechanical subsystem. The generalized momenta of the water
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mass and the buoy-piston are defined by pη = m1η̇ and pq = m2q̇, respectively. Hence, the state
vector is xm = [η q pη pq]

>, such that the mechanical subsystem can be written as

Σm =


ẋm =

[
02×2 I2×2

−I2×2 −Dm

]
∂Hm(xm)
∂xm

+

[
02×2

I2×2

]
um

ym =
[

02×2 I2×2

]
∂Hm(xm)
∂xm

,

(3.36)

where 02×2 is the null matrix, I2×2 represents the identity matrix, Dm is the dissipation matrix
and with the external power port (um, ym) defined as

um = [um,1 um,2]> = [Fw Fp]
> (3.37a)

ym = [ym,1 ym,2]> =

[
1

m1
pη

1

m2
pq

]>
= [η̇ q̇]>. (3.37b)

The dissipation term is defined by

Dm =

[
d′ −d′
−d′ d′

]
, (3.38)

with d′ > 0 being the damping coefficient between massesm1 andm2. The system can be described
as done in (2.22) by defining the matrices Jm and Rm as

Jm =

[
02×2 I2×2

−I2×2 02×2

]
and Rm =

[
02×2 02×2

02×2 Dm

]
. (3.39)

Note that Jm = −J>m and Rm ≥ 0 since Dm ≥ 0. The corresponding Hamiltonian or energy
function of the mechanical subsystem Σm is the sum of the energies of the storage elements, i.e.

Hm(xm) =
1

2

1

m1
pη

2 +
1

2
k′(η − q)2 +

1

2

1

m2
pq

2 (3.40)

being m1 the equivalent water mass body, m2 the mass of the piston-buoy ensemble and k′ > 0
the spring stiffness. Note that Hm(xm) ≥ 0. This function is comprised of kinetic and potential
energies:

Ek,Σm
=

1

2

1

m1
pη

2 +
1

2

1

m2
pq

2 =
1

2

[
pη pq

]
·
[

1/m1 0
0 1/m2

]
·
[
pη
pq

]
=

1

2
p>M−1p (3.41a)

Ep,Σm
=

1

2
k′(η − q)2 +

1

2
kPTOq

2 =
1

2

[
η q

]
·
[

k′ −k′
−k′ k′ + kPTO

]
·
[
η
q

]
=

1

2
x>Kx.

(3.41b)

Spring-damper-inerter connection

Combining the motion equations (3.11) and (3.16) together with the interconnection force given
in (3.22), it can be obtained the following expressions:(m1m2 +m1ma +m2ma)η̈ = (m2 +ma) · Fw −m2k(η − q)−m2d(η̇ − q̇) +maFp

(m1m2 +m1ma +m2ma)q̈ = maFw +m1k(η − q) +m1d(η̇ − q̇) + (m1 +ma) · Fp.
(3.42)

Defining a new parameter M as

M = m1m2 +m1ma +m2ma, (3.43)
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the mechanical subsystem can be written as

Σm =


ẋm =

[
02×2 ξ2×2

−ξ2×2 −Dm

]
∂Hm(xm)
∂xm

+

[
02×2

ξ2×2
>

]
· um

ym =
[

02×2 ξ2×2

]
∂Hm(xm)
∂xm

(3.44)

being

ξ2×2 =
1

M

[
m1(m2 +ma) m2ma

m1ma m2(m1 +ma)

]
, Dm =

(m1m2

M

)2

·
[

d −d
−d d

]
. (3.45)

Note that the structure of the system is similar to the previous one while the external port remains
the same:

um = [um,1 um,2]> = [Fw Fp]
> (3.46a)

ym = [ym,1 ym,2]> = [η̇ q̇]>. (3.46b)

In this case, the matrices Jm and Rm are

Jm =

[
02×2 ξ2×2

−ξ2×2 02×2

]
and Rm =

[
02×2 02×2

02×2 Dm

]
. (3.47)

Note that Jm = −J>m and Rm ≥ 0 since Dm ≥ 0.

The Hamiltonian of the mechanical subsystem Σm is

Hm(xm) =
1

2

1

m1
pη

2 +
1

2
k(η − q)2 +

1

2

1

m2
pq

2 +
1

2
ma

(
pη
m1
− pq
m2

)2

(3.48)

with ma being the added mass. Note that Hm(xm) ≥ 0. Kinetic and potential energies can be
written as

Ek,Σm
=

1

2

1

m1
pη

2 +
1

2

1

m2
pq

2 +
1

2
ma

(
pη
m1
− pq
m2

)2

(3.49a)

Ep,Σm
=

1

2
k(η − q)2. (3.49b)

3.2.2 Hydraulic subsystem

Original model

Let the state vector of the hydraulic subsystem be composed of the pressure difference between

the upper and the lower reservoir and the flow rate of internal fluid: xh =
[
P16 Q

]>
. Thus, the

hydraulic subsystem can be written as

Σh =


ẋh =

[
0 1/CI

−1/CI −R/I2

]
∂Hh(xh)
∂xh

+

[
0
1
I

]
uh

yh =
[

0 1/I
]
∂Hh(xh)
∂xh

,

(3.50)
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with an external power port (uh,yh) given by

uh = Ps (3.51a)

yh = Q. (3.51b)

It follows from (3.50) that the interconnection and damping matrices are

Jh =

[
0 1/CI

−1/CI 0

]
and Rh =

[
0 0
0 R/I2

]
. (3.52)

It can be verified that Jh = −J>h and Rh ≥ 0 since R/I2 ≥ 0.

The potential energy of the system is given by

Ep,Σh
=

∫
Ppotential dt =

∫
ρg

H︷ ︸︸ ︷
(L16 + LU − LL)Q dt

=

∫
ρg

(
L16 +

P16

ρg

)
CṖ16 dt = CρgL16P16 +

1

2
CP 2

16 +K.

(3.53)

Considering the initial potential energy to be zero, the constant K can be determined by

K = −CρgL16P16,0 −
1

2
CP 2

16,0,

where P16,0 is the initial value of P16. Therefore, it follows that Ep,Σh
≥ 0 since{

Ėp,Σh
= Ppotential ≥ 0

Ep,Σh
(t = 0) = 0.

In addition, the kinetic energy has the following expression

Ek,Σh
=

1

2
IQ2. (3.54)

Consequently, the Hamiltonian can be written as

Hh(xh) =
1

2
CP 2

16 +
1

2
IQ2 + CgρcL16P16 +K. (3.55)

Note that Hh(xh) ≥ 0.

Additional terms

In the present work, it has been introduced the second term from 3.1.4. The first term involves
a dynamically varying variable and further investigation would be needed. Thus, the hydraulic
subsystem can be written as

Σh =


ẋh =

[
0 1/CI

−1/CI −R/I2 − ρQ
I2Ac2

]
∂Hh(xh)
∂xh

+

[
0
1
I

]
uh

yh =
[

0 1/I
]
∂Hh(xh)
∂xh

,

(3.56)
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where the interconnection and damping matrices are

Jh =

[
0 1/CI

−1/CI 0

]
and Rh =

[
0 0

0 R/I2 + ρQ
I2Ac2

]
(3.57)

and with the same external port as in (3.51).

It follows that Jh = −J>h and Rh ≥ 0 since R/I2 + ρQ/(I2Ac2) ≥ 0. In this case, the dissipation
term is attributable to the resistor element and the losses due to the transfer of momentum of the
moving fluid column to the stationary fluid in the lower reservoir. Now, the dissipation rate is
given by

dEdiss
dt

= RQ2 +
ρQ3

A2
c

. (3.58)

3.2.3 Interconnected system

As discussed in Section 3.1.5, the hydraulic subsystem introduces a switching behaviour between
the upward and downward movement4. It can be formalized through a binary variable σ defined
by

σ =

{
1 for q̇ and Fp > 0

0 otherwise
(3.59)

such that the hydraulic subsystem becomes

Σh =

ẋh = (σJh − σDh)∂Hh(xh)
∂xh

+

[
0
σ2

I

]
Ps

yh = σ2Q

(3.60)

while the mechanical subsystem remains the same. Finally, the interconnection can be redefined
by using a transformer element (Barradas-Berglind et al., 2016a)

um,2 = −σAcuh
σyh = Acym,2

or equivalently,

Fp = −σAcPs (3.62a)

σQ = Acq̇. (3.62b)

Note that this linkage is not the usual input-output interconnection where the output of one system
is connected to the input of the other system.

Hence, for σ = 1 Σm and Σh are coupled, whereas σ = 0 leads to

Fp = 0 (3.63a)

0 = Acq̇ (3.63b)

effectively decoupling Σh from Σm.

Considering the Hamiltonian of the interconnected system as

Hpa(xm, xh) = Hm(xm) +Hh(xh), (3.64)

it can be checked that the PA system resulting from the interconnection of the mechanical sub-
system Σm

5 and the hydraulic subsystem Σh is passive with respect to the external port (η̇,Fw).

4In this section it is introduced the interconnection between the mechanical and hydraulic subsystems so as to
show the passivity property of the interconnected system and that the energy function of the loss-less (without
dissipative terms) hydraulic subsystem is non-decreasing. Nevertheless, in the present thesis both subsystems are
simulated individually, i.e., the interconnection stage is not used.

5The result obtained is the same for the spring-damper model and for the spring-damper-inerter model.
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Passivity is characterised by a dissipation inequality which guarantees that the derivative of a
storage or energy function is at most the product of the external ports, i.e.,

Ḣpa(xm, xh) ≤ η̇Fw. (3.65)

Taking into account the global energy function given in (3.64), the derivative of the Hamiltonian
can be written as

Ḣpa(xm, xh) = Ḣm(xm) + Ḣh(xh)

=
∂Hm

∂xm

>
(Jm −Rm)

∂Hm

∂xm
+
∂Hm

∂xm

>


0
0
Fw
Fp

+
∂Hh

∂xh

>
(σJh − σRh)

∂Hh

∂xh
+
∂Hh

∂xh

> [ 0
σ2

I Ps

]

= −d(η̇ − q̇)2 + η̇Fw + q̇Fp − σRQ2 − σ ρ

Ac2
Q3 + σ2PsQ.

(3.66)

Substituting the interconnection given in (3.62) leads to

Ḣpa = −d(η̇ − q̇)2 + η̇Fw − q̇σAcPs − σRQ2 − σ ρ

Ac2
Q3 + σPsAcq̇

= −d(η̇ − q̇)2 + η̇Fw − σRQ2 − σ ρ

Ac2
Q3 ≤ η̇Fw.

(3.67)

Since d, R andQ ≥ 0, it can be concluded that the PA system is passive with respect to the external
port (η̇,Fw). Note that Ḣpa has three dissipative terms, the first one due to the damping effects
in the mechanical subsystem and the other two due to the dissipative terms in the hydraulic
subsystem. It can be noticed that the dissipative terms from the hydraulic subsystem appear
multiplied by σ, meaning that this dissipation is decoupled whenever the buoy-piston is disengaged
during the downward movement.

In addition, it can be seen that, disregarding the resistive terms, the energy function is non-
decreasing, which verifies the storage of the kinetic energy from the mechanical subsystem as
potential energy. The derivative of the Hamiltonian function Hh(xh) is given by

Ḣh =
∂Hh

∂xh

>
(σJh − σRh)

∂Hh

∂xh
+
∂Hh

∂xh

> [ 0
σ2

I Ps

]
= −σRQ2 − σ ρ

Ac2
Q3 + σ2PsQ, (3.68)

which due to the switching coupling becomes

Ḣh =

{
−RQ2 − ρ

Ac2Q
3 + PsQ for q̇ > 0

0 otherwise.
(3.69)

Hence, without the dissipative terms RQ2 and ρ
Ac2Q

3, the Hamiltonian function is non-decreasing.

3.3 Results

In this section, it is presented the numerical simulations for the mechanical and hydraulic sub-
systems. These systems have been simulated separately, therefore the interconnection stage still
needs to be included in order to obtain the complete PA interconnected system.
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3.3.1 Mechanical subsystem

Tables 3.1, 3.2 and 3.3 summarize the model parameters used for the simulation6.

Table 3.1: Mechanical model parameters

Parameter Value Description Unit

− 7x7x2 Dimensions floater m3

g 9,81 Gravitational acceleration m/s2

ρsw 1025 Sea water density kg/m3

m1 6,27·105 Displaced water eq. mass kg
m2 1650 Buoy-piston eq. mass kg
ma 1,55·105 Added mass kg
d 2,17·104 Damping coefficient Ns/m
Db 1 Draft m
kPTO 5,8·104 Stiffness of PTO N/m
dPTO 1,1·104 Damping of PTO Ns/m
− 500 Depth m

Table 3.2: Wave parameters

Parameter Value Description Unit

H 4 Wave height m
T 10 Wave period s
λw 156,13 Wave length m

Table 3.3: Simulation parameters

Description Value Unit

Max time step 10−3 s
Solver ode45 -
Simulation duration 50 s

In Fig. 3.10 it is shown the vertical (heave) displacement of the buoy for the harmonic wave
introduced, as well as the excitation force needed to obtain the desired motion of the water body.
The initial transients (0 - 10 s) has been removed for clarity.
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Figure 3.10: Excitation force (top) and wave and buoy displacements (bottom)

6It is important to recall that for the simulation of the mechanical subsystem it is considered a spring-damper
PTO force instead of the real pumping force derived from the pumping subsystem.
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Analysing the evolution of energies involved, in Fig. 3.11 it can be seen the energy transmission
between kinetic and potential energies and the total dissipated energy.
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Figure 3.11: Energy evolution

On the other hand, in case of not introducing an external force Fw and with non-null initial
position (Fig. 3.12), the energy keeps decreasing due to the dissipative terms.
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Figure 3.12: Energy evolution for Fw = 0

The previous simulation have considered the linearised PTO parameters kPTO = 5,8·104 N/m
and dPTO = 1,1·104 Ns/m. In Fig. 3.13 it is shown the energy dissipated due to the PTO
(extracted energy) for different values of the parameters. The results indicate that if increasing
kPTO maintaining the value of dPTO, the extracted energy decreases. On the other hand, when
the value of kPTO remains the same while increasing dPTO, the value of the absorbed energy
increases.

Modular modelling for the power take-off system of a wave energy converter 29



CHAPTER 3. POINT ABSORBER MODEL

20 30 40 50
100

200

300

400

E
x
tr

a
c
te

d
 e

n
e
rg

y
 [

k
J
] k

PTO
 = 2,9·10

4
 N/m

k
PTO

 = 5,8·10
4
 N/m

k
PTO

 = 11,6·10
4
 N/m

20 30 40 50

Time [s]

0

200

400

600

800

E
x
tr

a
c
te

d
 e

n
e

rg
y
 [

k
J
] d

PTO
 = 5,5·10

3
 Ns/m

d
PTO

 = 1,1·10
4
 Ns/m

d
PTO

 = 2,2·10
4
 Ns/m

Figure 3.13: Extracted energy for different values of kPTO and dPTO

In the simulation, it has been fixed the motion of the wave and then obtained the corresponding
excitation force Fw. However, it would be useful determinate the excitation force required to get
the desired displacement of the water mass. Thus, it has been calculated Fw for different wave
periods as well as for some wave heights; in Fig. 3.14 is depicted Fw with respect to the force for
H = 1 m. The results indicate that amplitude of Fw is directly proportional to the wave height;
therefore, it is only necessary the value for one wave height and the it can be multiplied by the
corresponding factor to obtain Fw. Accordingly, the amplitude of the excitation force is plotted
against the wave frequency for a range from 4 to 20 seconds and 1 m height (Fig. 3.15).
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Figure 3.14: Wave excitation force Fw for different wave periods and heights
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Figure 3.15: Wave excitation force Fw for H = 1 m

In order to analyse the result obtained, it is compared the RAO (Response Amplitude Operator)
with the results from validated models (a time-domain (TD) and a frequency-domain (FD) models)
for a wave period range from 3 to 10 seconds (Fig. 3.16). The parameters used are the same than
in (Yu, 2017). In the upper plot it is presented the RAO for the TD and FD models, as well
as for the present model using the excitation force Fe obtained from Nemoh and the calculating
it through Equation (3.5). In the lower plot, it is depicted the error between the present model
(using the Fe equation) and the FD model.
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Figure 3.16: Single floater heave RAO

The present model with Fe from Nemoh and the FD results are in good agreement; thus, the
inclusion of additional degrees of freedom in the floater does not significantly influence the heaving
motion of a single floater. On the other hand, as seen in Fig. 3.1, the deviation of the present
model with Fe from the equation increases for high period waves, whereas for lower frequency
values (not presented in the figure), the result is similar.
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3.3.2 Hydraulic subsystem

Tables 3.4, 3.5 and 3.6 summarize the model parameters used. As the pumping system is simulated
individually, it has been fixed a sinusoidal motion to the piston. In this work it has been considered
a fixed value of the piston areaAc; however, Ac could be modified to optimize the energy extraction,
as done in (Barradas-Berglind et al., 2016b).

Table 3.4: Hydraulic model parameters

Parameter Value Description Unit

g 9.81 Gravitational acceleration m/s2

ρ 1080 Working fluid density kg/m3

µ 0,0734 Working fluid viscosity Pas
L16 100 Pipe length m
Au 49 Upper reservoir area m2

Al 49 Lower reservoir area m2

Ac 0,0738 Cylinder cross section area m2

LU0 10 Upper reservoir initial hydraulic head m
LL0 30 Lower reservoir initial hydraulic head m

Table 3.5: Piston motion parameters

Parameter Value Description Unit

H 4 Motion height m
T 10 Period s

Table 3.6: Simulation parameters

Description Value Unit

Max time step 10−2 s
Solver ode45 -
Simulation duration 40 s

The piston displacement and velocity, pumping force Fp and pumping power Pp = Fpq̇ are plotted
in Fig. 3.17.
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Figure 3.17: Piston displacement and velocity, pumping force and pumping power
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In Fig. 3.18 it is plotted the individual contribution to the pumping force of the additional terms
described in 3.1.4, implying an increase in the pumping force required at certain points. In the
case of the third term, the difference is mainly due to the fact that combining a restistor-inertor
with the same length as done in the present model implies that the inertance used is half of the
one if only considering an inertor, rather than the effect of the resistor.
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Figure 3.18: Pumping force terms

It can be noticed that the values are small for the simulation parameters used. Nevertheless,
the first and second terms can increase its importance depending on the amplitude of the piston
motion and the wave frequency. For example, in case of having a 12m height and a period of 4s,
the error would be around 9% and 10%, respectively. Moreover, the second term also becomes
higher with the increasing of the upper reservoir hydraulic head.

In Fig. 3.19, it is shown the flow rate and pressure difference between the reservoirs, as well as the
(maximum) hydraulic head. As would be expected, the pressure increases in the upper reservoir
while decreases in the lower by an amount corresponding to the pumped fluid. The hydraulic head
increases by 12mm per cycle. This transfer of working fluid from the lower to the upper reservoir
is translated into the accumulation of potential energy, as depicted in Fig. 3.20.
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Figure 3.19: Flow rate, pressure difference between reservoirs and hydraulic head
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Figure 3.20: Kinetic and potential energies

The pumping and and potential power are close in amplitude, as shown in Fig. 3.21, with the
deviation being attributable to the dissipation in the resistors, the change in momentum of the
fluid and the kinetic power.
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Figure 3.21: Pumping and potential power

The deviation between the pumping and potential energies yields the efficiency of the pumping
system

η[%] =
Epotential
Epumping

× 100 = 99, 72%. (3.70)
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Chapter 4

Array of point absorbers model

A single floater can only extract limited amount of energy, whereas a grid of interconnected floater
elements (floater blanket) can sequentially extract more energy in total. Energy extraction is
expected to diminish the energy content and height of the wave as it moves through the WEC,
i.e., the first pump unit can potentially extract more energy than the second, and so on.

4.1 Model considered

In the case of a floater blanket, the extracted energy of a WEC is not only determined by the
incident wave, but also by the radiated/diffracted waves from neighbouring PAs. The schematic
of the array of PAs is shown in Fig. 4.1. The water elements are interconnected to its respective
neighbours and each pumping system is connected between the same reservoirs. The interconnec-
tion force between the water bodies is transmitting the excitation force and the radiation forces
coming from the other point absorbers.
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Figure 4.1: Complete PTO schematic
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Forces acting on each water body are depicted in Fig. 4.2, for the case of 3 PAs.

W1

Fb1

Fw Fw12

W3

Fb3Fw23

W2

Fb2

Fw23

Fw12

η1 η2 η3

Figure 4.2: Free body diagrams of the water bodies for 3 PAs

Equivalently, it can be expressed for the general case of n point absorbers as
m1η̈1 = Fw + Fb1 + Fw12

m1η̈2 = Fb2 − Fw12 + Fw23

...

m1η̈n = Fbn − Fw(n−1,n) + ZZFr .

(4.1)

Note that reflection term is neglected in the last equation.

The interconnection force between water bodies i and j can be defined with position and velocity
contributions as1

F = ρ1 ∗ k1 (ηj − ηi) + ρ2 ∗ k2 (η̇j − η̇i) , (4.2)

where ρ1, k1, ρ2 and k2 are parameters and the operator ∗ represents the convolution operation.
Defining ρ1 and ρ2 as

ρ1 = e−λ1t, ρ2 = e−λ2t (4.3)

and applying the Laplace transform to (4.2) yields

F (s) =
1

s+ λ1︸ ︷︷ ︸
H1(s)

k1 (ηj(s)− ηi(s)) +
1

s+ λ2︸ ︷︷ ︸
H2(s)

k2 (η̇j(s)− η̇i(s)) , (4.4)

where s is the Laplace variable and H1(s), H2(s) are first order lowpass filters.

Hence, the interconnection force Fwij between water bodies i and j is given by

Fwij = αij + βij , (4.5)

where αij and βij are dynamical varying variables that depend on the parameters λα,ij , kα,ij , λβ,ij
and kβ,ij satisfying Equation (4.6). These parameters have to be identified in order to approximate
the connection between the PAs.

α̇ij = −λα,ijαij + kα,ij(ηj − ηi) (4.6a)

β̇ij = −λβ,ijβij + kβ,ij(η̇j − η̇i). (4.6b)

1Convolution kernels given by Cummins’ equation.

38 Report



CHAPTER 4. ARRAY OF POINT ABSORBERS MODEL

4.2 Reference model

4.2.1 Formulation

To adjust the parameters of the model, it is needed a verified model to compare with. Hence,
a time-domain model has been developed from (Wei et al., 2017b) and subsequently validated
against the results from it. The present model only takes into account the heave motion (vertical
displacement) and does not consider mechanical coupling between the floaters. Based on this as-
sumptions, the motion equations for a floater blanket of M elements, where the index m represents
the mth floater, are described by

M (m)Ẍ(m) = F (m)
e + F (m)

r + F
(m)
hs + F

(m)
pto , (4.7)

where M (m) is the mass of the buoy m, X(m) is the displacement of each buoy, F
(m)
e is the wave

excitation force vector, F
(m)
r is the radiation force vector, F

(m)
hs is the restoring force vector and

F
(m)
pto is the force vector coming from the hydraulic system.

The radiation force F
(m)
r is composed of the radiation forces due to the motion of the floater m

itself as well as to the other floaters:

F (m)
r = −

M∑
n=1

(A(m,n)Ẍ(m) + C(m,n)Ẋ(m)), (4.8)

where A(m,n), C(m,n) are the frequency-dependent added-mass and damping coefficient matrices,
respectively. Note that the superscripts m and n denote the radiation contribution of floater n
on floater m. Thus, in this model the neighbour radiation is considered as a superposition of the
effects due to the motion of the other floaters.

In addition, F
(m)
hs is defined as a linear function of the heave motion, which can be expressed as

F
(m)
hs = −K(m)

hs X(m), (4.9)

where K
(m)
hs corresponds to the hydrostatic stiffness that specifies the variation of the net weight

and buoyancy load with respect to the changes in position from equilibrium.

Finally, a simple PTO is considered2, described as a linear spring-damper system by

F
(m)
pto = −K(m)

pto X
(m) − C(m)

pto Ẋ
(m), (4.10)

where Kpto and Cpto are the stiffness and damping coefficients of the PTO, respectively. Therefore,
we have the following equation

M (m)Ẍ(m) = F (m)
e −

M∑
n=1

(A(m,n)Ẍ(m) + C(m,n)Ẋ(m))−K(m)
hs X(m) + F

(m)
pto . (4.11)

A ramp function Rf is used to introduce the wave excitation force in order to avoid strong transient
flows at earlier time steps of the simulation. The ramp function is given by

Rf =

{
1
2 (1 + cos(π + πt

tr
)) t

tr
< 1

1 t
tr
≥ 1

(4.12)

where t is the simulation time and tr is the ramp time.

2In (Wei et al., 2017b), it is also considered a spring-damper PTO.
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The time-averaged absorbed power can be obtained integrating the extracted power for one wave
period at steady state or, assuming a sinusoidal velocity of the floater, it can be calculated with

Pk =
1

2
Cpto,k|Ẋk|2, (4.13)

where Pk is the time-averaged absorbed power by the floater k, Cpto is the damping coefficient of

the floater k in the PTO system and |Ẋk| is the amplitude of the heave velocity of the floater k.

4.2.2 Results

The relevant parameters of the model are summarized in Table 4.1. It is considered a one-column
floater blanket comprised of ten prismatic buoys.

Table 4.1: Floater blanket parameters

Description Value Unit

Number of floaters 10 -
Dimension of floater 7x7x2 m3

Mass of floater 1500 kg
Stiffness of PTO 5,8·104 N/m
Damping of PTO 1,1·104 Ns/m
Water density 1025 kg/m3

Draft 1 m

Similarly to the PA, the hydrodynamic coefficients required for the model −A, C, Fe− can be
obtained from Nemoh (Wei et al., 2017b). The floater blanket displacement for a wave height of
2 m and four wave periods is shown in Fig. 4.3. The maximum displacement of each buoy along
the floater blanket is indicated by a black line.
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Figure 4.3: Buoy displacement for different frequencies
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The amplitude of the floaters displacement is always less than 1 and decreases with the wave
frequency. For low frequency waves, the floaters moves synchronously with the wave evolution,
such that all the floater elements exhibits a similar performance. Therefore, the energy extraction
for each unit is similar. On the other hand, for short-period waves, there is a general decreasing
trend of the amplitude from the first floater to the last. This is because the diffraction and
radiation effects become significant when the length of the floater blanket is comparable to the
wavelength.

From these results, it can be calculated the overall capture power of the whole floater blanket. In
Fig. 4.4, it is shown the result for the 1 DOF case (only considering heave degree of freedom) and
for the 2 DOF case3 (taking into account heave and pitch motion). Additionally, it is plotted the
results of some cases from (Wei et al., 2017b). These cases are briefly described below4:

• TD is the time-domain model (Wei et al., 2017a), based on the open-source WEC-Sim code.

• case1 FD is the frequency-domain general case.

• case2 FD neglects the neighbour radiation.

• case3 FD removes the hinges between the floater elements, but restricts their surge motion
individually (each floater has independent heave and pitch motions).

• case5 FD is similar to case3, but does not account for the neighbour radiation. The floater
elements are considered as independent heave absorbers.
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Figure 4.4: Overall capture power [kW]

It can be seen that the power capture of the floater blanket increases with wave frequency, reaching
the maximum energy extraction at ω ≈ 1,4 rad/s. The results indicate that not considering
hinge coupling between floaters does not significantly influence the overall capture power for the
simulation parameters considered. Therefore, in this case, if restricting each surge displacement
individually or only fixing the surge motion of the first floater, results in a similar motion of the
floater blanket. However, when considering different PTO settings for each point absorber, the
hinge coupling may be more relevant.

3The inertia and stiffness coefficients used are the same than in (Yu, 2017).
4The numbering of the cases is the same than in (Wei et al., 2017b).
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On the other hand, if heave and pitch motion are taken into account (2 DOF), the result is almost
equal to case3. Finally, there is a great reduction of the overall extracted power for 1 DOF case
compared with 2 DOF for high frequency waves, though for low frequencies the match is perfect.
Thus, not considering pitch motion may underestimate the capture power by 46, 3% at maximum
frequency. In terms of overall capture power, radiation becomes more important as wave frequency
increases and so does the radiation due to the pitch motion. The individual capture power in each
floater for the 1 DOF and 2 DOF cases is presented in Fig. 4.5.
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Figure 4.5: Capture power [kW] only considering heave (left) and taking into account heave and
pitch (right)

The radiation terms represent an energy redistribution along the floater blanket due to the motion
of the floaters. The superposition of radiated/diffracted waves may strengthen or diminish the
waves at the location of the floaters, resulting in an increase or decrease of energy extraction on
those floaters.

4.3 Parameter identification

From the 1 DOF model, it can be determined the parameters for the interconnection of the PAs;
the procedure is shown in the following. First, it has been extracted the displacement, velocity and
acceleration of each floater for a wave of 1 m height and a frequency of 0,62 rad/s (T = 10,14s).

From this data, it has to be obtained individually for each point-absorber the height and phase
of the equivalent wave that would produce the desired motion of each floater. First, it can be
defined an equivalent force due to the superposition of the motion of the wave body itself and the
radiated waves coming from the other wave bodies. Thus, Equation (4.11) can be rewritten as

[
M (m) +A(m,m)

]
Ẍ(m) +C(m,m)Ẋ(m) = F (m)

e −
M∑
n=1
n 6=m

(A(m,n)Ẍ(m) + C(m,n)Ẋ(m))

︸ ︷︷ ︸
F

(m)
e,eq

+F
(m)
hs +F

(m)
pto .

(4.14)

42 Report



CHAPTER 4. ARRAY OF POINT ABSORBERS MODEL

Secondly, from this equivalent force F
(m)
e,eq , it can be calculated the corresponding height and phase

of the equivalent wave from the excitation force presented in the previous chapter:

Fe = (maη̈
∗ +Bη̇∗ +Kη∗) .

The final result is shown in Fig. 4.6. The dashed lines represent the displacement of the water
elements and the solid lines correspond to each buoy displacement. For better clarity, each pair
wave-floater are plotted with the same colour. Once known the wave and floaters motion, it can
be recovered the excitation force that should be introduced to each wave body with Equations
(3.22) and (4.1).

Figure 4.6: Waves (dashed lines) and floaters displacement

From this point, the parameters of the connection between the PAs can be calculated through an
optimization method5. In the case of the last couple of floaters, we have Fw9,10 defined as

Fw9,10 = α9,10 + β9,10,

and taking into account the expressions of the variables α9,10 and β9,10:

α̇9,10 = −λα(9,10) α9,10 + kα(9,10) (η10 − η9)

β̇9,10 = −λβ(9,10) β9,10 + kβ(9,10) (η̇10 − η̇9),

the best estimation of the parameters is

λα(9,10) = 0, 018 s−1 kα(9,10) = 2440, 626
N

ms
λβ(9,10) = 3, 415 s−1 kβ(9,10) = 3, 864·106 N

m
.

The error between the results from the reference model and the displacement calculated using the
above parameters for a time step of 10−3 s is depicted in Fig. 4.7. In this case, the contribution
of α to the interconnection force is very small compared to β (see Fig. 4.8).

5The related MATLAB code can be found in the Appendix.

Modular modelling for the power take-off system of a wave energy converter 43



CHAPTER 4. ARRAY OF POINT ABSORBERS MODEL

950 960 970 980 990 1000
-1

-0.5

0

0.5

1

q
1

0
 [

m
]

950 960 970 980 990 1000

Time [s]

-5

0

5

E
rr

o
r 

[m
]

10-10

Figure 4.7: Floater 10 displacement and error
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Figure 4.8: Interconnection force between PAs 9 and 10

Therefore, as the deviation is negligible, the interconnection proposed between water bodies with
the parameters found acquires an excellent result. However, these connection between the water
elements and the parameters that define it should be evaluated for other simulation conditions
(incoming wave height and frequency, PTO settings, etc.) in order to verify the correct concept
used in the present model6. Hence, further investigation will be required.

6Since the coefficients that define the radiation force are frequency-dependent, the parameters obtained for the
present model may also depend on the wave frequency.
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Chapter 5

Conclusions and further work

5.1 Conclusions

The goal of this was to develop a model of the MP2PTO system with improved computational
efficiency. First, a reduced and modular model for the buoy-piston-pump point-absorber system
has been presented. The model takes into account the radiation effects with software based on the
boundary-element method. Besides, the simulations of both mechanical and hydraulic subsystems
have shown good individual performance and the inerter has successfully been incorporated in
the mechanical subsystem. Regarding the pumping system, the additional terms introduced has
proven to have small impact for the simulation conditions utilized; nevertheless, its contribution
can increase and should therefore be investigated. In addition, it has been compared the present
results of the mechanical subsystem with those from a time-domain and a frequency-domain
validated models, showing the main deviations for high frequency values.

Subsequently, the point absorber is described in the port-Hamiltonian framework and it is shown
the passivity of the interconnected system with respect to its external port and the effectively
storage of potential energy. The PH framework provides a cross-domain energy-based modelling
methodology that allows for modularity and scalability. Moreover, the role of energy and the
interconnection between subsystems provide the basis for control, which is interesting in particular
for complex non-linear systems.

Furthermore, the model for an array of point-absorber devices is introduced. From the analysis of
the reference model results, it can be concluded that the floater elements exhibit a similar response
for long-period waves, but their motion may be influenced by diffraction and radiation effects under
short-period waves. It is also shown that the effect of pitch becomes important for short-period
waves; moreover, if mechanical coupling is introduced, this degree of freedom will have to be
considered. On the other hand, the results indicate that not considering hinge coupling between
floaters does not significantly influence the overall capture power for the simulation parameters
considered. Lastly, in terms of overall capture power, the 2 DOF simulated model produce similar
results to the 6 DOF frequency model from (Wei et al., 2017b).

Finally, the interconnection of several point-absorber devices through the water bodies is proposed
and tested, obtaining a perfect match with the reference model for the simulation conditions
employed.
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5.2 Recommendations

Future work still needs to be done to obtain a complete model of the WEC in the PH framework.
Some further steps could be:

1. Include the varying hydraulic head term in the hydraulic subsystem.

2. Connect the mechanical and hydraulic subsystems to simulate the real system instead of
a spring-damper PTO. As explained in the thesis, the interconnection proposed does not
follow the usual input-output linkage and incorporating it would therefore require further
work.

3. Estimate all the parameters from the interconnection of the ten floater elements and evaluate
the interconnection for different simulation conditions.

4. Include the proposed interconnection model into the PH framework.

5. Evaluate the model for all range of wave frequencies.

6. Include mechanical coupling between the floaters. This joints and the forces involved have
to be defined and modelled.

7. Design of control strategies, by modifying the cylinder area, in order to maximize the ex-
tracted energy.
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Appendix A

MATLAB code

In the following it is provided the PH model code and simulink models for the mechanical and
hydraulic subsystems, as well as the code and simulink model for the array of point-absorbers.

A.1 Mechanical subsystem

Figure A.1: Mechanical model in Simulink

A.1.1 Spring-damper model

function [dx_m]= Ocean_Mechanical(w)

n = w(1);

q = w(2);

p_n = w(3);

p_q = w(4);

Fw = w(5);

% Parameters

g = 9.81; % Gravitational acceleration [m/s$ˆ2$]

rho_sw = 1025; % Sea water density [kg/m$ˆ3$]

Aw = 49; % Water area 7x7 [m$ˆ2$]

k = Aw*rho_sw*g; % Stiffness (Buoyancy coefficient) [kg/s$ˆ2$]

T = 10;

w = 2*pi/T; % Incoming wave frequency [rad/s]

ma = 1.553425e5; % Added mass [kg]

d = 2.167722e4; % Damping coefficient [Ns/m]
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k = k - ma*wˆ2; % Stiffness coefficient [kg/s$ˆ2$]

kPTO = 5.8e4; % Stiffness of PTO [N/m]

dPTO = 1.1e4; % Damping of PTO [Ns/m]

m1 = Aw*rho_sw*g/(2*wˆ2); % Water mass [kg]

m2 = 1500+150; % Buoy-piston mass [kg]

% Pumping force

Fp = -kPTO*q - dPTO*p_q/m2;

%Partial derivatives of the Hamiltonian Hm(x_m)

%with x_m = [n, q, p_n, p_q]'

dHm_dn = k*(n-q);

dHm_dq = -k*(n-q);

dHm_dp_n = p_n/m1;

dHm_dp_q = p_q/m2;

%Damping matrix

D_m = [d -d;

-d d];

%Interconnection Matrix

J_m = [zeros(2), eye(2);

-eye(2), zeros(2)];

%Dissipation matrix

R_m = [zeros(2), zeros(2);

zeros(2), D_m];

%Partial derivatives of Hamiltonian

dH_dx_m=[dHm_dn ;...

dHm_dq ;...

dHm_dp_n;...

dHm_dp_q ];

%Input matrix

G_m=[zeros(2);

eye(2)];

%Inputs of the mechanical subsystem

u_m = [Fw;

Fp];

%Port-Hamiltonian System dynamics

dx_m = (J_m-R_m)*dH_dx_m + G_m*u_m;

end
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function [E_m]= Energy_Ocean_Grazer_Mechanical(w)

n = w(1);

q = w(2);

p_n = w(3);

p_q = w(4);

% Parameters

g = 9.81; % Gravitational acceleration [m/s$ˆ2$]

rho_sw = 1025; % Sea water density [kg/m$ˆ3$]

Aw = 49; % Water area 7x7 [m$ˆ2$]

k = Aw*rho_sw*g; % Stiffness (Buoyancy coefficient) [kg/s$ˆ2$]

T = 10;

w = 2*pi/T; % Incoming wave frequency [rad/s]

ma = 1.553425e5; % Added mass [kg]

d = 2.167722e4; % Damping coefficient [Ns/m]

k = k - ma*wˆ2; % Stiffness coefficient [kg/s$ˆ2$]

kPTO = 5.8e4; % Stiffness of PTO [N/m]

dPTO = 1.1e4; % Damping of PTO [Ns/m]

m1 = Aw*rho_sw*g/(2*wˆ2); % Water mass [kg]

m2 = 1500+150; % Buoy-piston mass [kg]

Potential = 1/2*k*(n-q)ˆ2 + 1/2*kPTO*(q)ˆ2;

Kinetic = 1/2*p_nˆ2/m1 + 1/2*p_qˆ2/m2;

Dissipated = d*(p_n/m1 - p_q/m2)ˆ2 + dPTO*(p_q/m2)ˆ2;

E_m = [Potential;...

Kinetic;...

Dissipated];

end
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A.1.2 Spring-damper-inerter model

function [dx_m]= Ocean_Mechanical(w)

eta = w(1);

q = w(2);

p_eta = w(3);

p_q = w(4);

Fw = w(5);

% Parameters

g = 9.81; % Gravitational acceleration [m/s$ˆ2$]

rho_sw = 1025; % Sea water density [kg/m$ˆ3$]

Aw = 49; % Water area 7x7 [m$ˆ2$]

k = Aw*rho_sw*g; % Stiffness coefficient [kg/s$ˆ2$]

T = 10;

w = 2*pi/T; % Incoming wave frequency [rad/s]

ma = 1.553425e5; % Added mass [kg]

d = 2.167722e4; % Damping coefficient [Ns/m]

kPTO = 5.8e4; % Stiffness of PTO [N/m]

dPTO = 1.1e4; % Damping of PTO [Ns/m]

m1 = Aw*rho_sw*g/(2*wˆ2); % Water mass [kg]

m2 = 1500+150; % Buoy-piston mass [kg]

M = m1*m2+m1*ma+m2*ma;

alpha1 = m1*(ma+m2)/M;

beta1 = ma*m2/M;

alpha2 = m1*ma/M;

beta2 = m2*(m1+ma)/M;

% Pumping force

Fp = -kPTO*q - dPTO*p_q/m2;

%Partial derivatives of the Hamiltonian Hm(x_m)

%with x_m = [\eta, q, p_eta, p_q]'

dHm_deta = k*(eta-q);

dHm_dq = -k*(eta-q);

dHm_dp_eta = (p_eta/m1)+ma*(p_eta/m1-p_q/m2)/m1;

dHm_dp_q = (p_q/m2)-ma*(p_eta/m1-p_q/m2)/m2;

%Damping matrix

D_m = (m1*m2/M)ˆ2*[d -d;

-d d];

%Interconnection Matrix

J_m=[ zeros(2) [alpha1 beta1; alpha2 beta2];...

-[alpha1 beta1; alpha2 beta2]' zeros(2)];

%Dissipation matrix

R_m=[zeros(2) zeros(2);...

zeros(2) D_m];
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%Partial derivative of Hamiltonian

dH_dx_m=[dHm_deta ;...

dHm_dq ;...

dHm_dp_eta;...

dHm_dp_q ];

%Input matrix

G_m=[zeros(2);

m1*(m2+ma)/M ma*m1/M;

m2*ma/M m2*(m1+ma)/M];

%Inputs of the mechanical subsystem

u_m = [Fw;...

Fp];

%Port-Hamiltonian System dynamics

dx_m=(J_m-R_m)*dH_dx_m+G_m*u_m;

end

function [E_m]= Energy_Ocean_Grazer_Mechanical(w)

n = w(1);

q = w(2);

p_n = w(3);

p_q = w(4);

% Parameters

g = 9.81; % Gravitational acceleration [m/s$ˆ2$]

rho_sw = 1025; % Sea water density [kg/m$ˆ3$]

Aw = 49; % Water area 7x7 [m$ˆ2$]

k = Aw*rho_sw*g; % Stiffness coefficient [kg/s$ˆ2$]

T = 10;

w = 2*pi/T; % Incoming wave frequency [rad/s]

ma = 1.553425e5; % Added mass [kg]

d = 2.167722e4; % Damping coefficient [Ns/m]

kPTO = 5.8e4; % Stiffness of PTO [N/m]

dPTO = 1.1e4; % Damping of PTO [Ns/m]

m1 = Aw*rho_sw*g/(2*wˆ2); % Water mass [kg]

m2 = 1500+150; % Buoy-piston mass [kg]

Potential = 1/2*k*(n-q)ˆ2 + 1/2*kPTO*(q)ˆ2;

Kinetic = 1/2*p_nˆ2/m1 + 1/2*p_qˆ2/m2 + 1/2*ma*(p_n/m1-p_q/m2)ˆ2;

Dissipated = d*(p_n/m1 - p_q/m2)ˆ2 + dPTO*(p_q/m2)ˆ2;

E_m = [Potential;...

Kinetic; ...

Dissipated];

end
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A.2 Hydraulic subsystem

Figure A.2: Hydraulic model in Simulink

function dx_h = Ocean_Hydraulic(w)

p16 = w(1);

Q = w(2);

Ps = w(3);

% Parameters

g = 9.81; % Gravitational acceleration [m/s2]

rho = 1080; % Fluid density [kg/m3]

mu = 0.0734; % Fluid viscosity [Ns/m2]

Lc = 100; % Pipe length [m]

Au = 49; % Upper reservoir area [m2]

Al = 49; % Lower reservoir area [m2]

Ac = 0.0738; % Cylinder cross section area [m2]

I12 = rho*Lc/(4*Ac);

I56 = I12;

R23 = 2*mu*pi*Lc/Acˆ2;

R45 = R23;

C13 = Au/(rho*g);

C46 = Al/(rho*g);

I = I12 + I56; % Fluid inertance [kg/m4]

R = R23 + R45; % Fluid resistance [kg/m4s]

C = C13*C46/(C13+C46); % Fluid capacitance [kg/m4s2]

%Interconnection Matrix

J_h=[0, 1/(I*C);

-1/(I*C), 0];

%Input Matrix

G_h = [0;

1/I];

%Dissipation matrix

R_h=[0 0;

0 R/Iˆ2];

dH_h_dP_16 = C*p16 + C*rho*Lc*g;

dH_h_dQ = I*Q;

%Partial derivative of Hamiltonian
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dH_h=[dH_h_dP_16;

dH_h_dQ];

%Input

u_h = Ps;

%Port-Hamiltonian System Dynamics

dx_h=(J_h-R_h)*dH_h+G_h*u_h;

end

function [E_h] = Energy_Ocean_Grazer_Hydraulic(w)

% Parameters

g = 9.81; % Gravitational acceleration [m/s2]

rho = 1080; % Fluid density [kg/m3]

mu = 0.0734; % Fluid viscosity [Ns/m2]

Lc = 100; % Pipe length [m]

Au = 49; % Upper reservoir area [m2]

Al = 49; % Lower reservoir area [m2]

Ac = 0.0738; % Cylinder cross section area [m2]

I12 = rho*Lc/(4*Ac);

I56 = I12;

R23 = 2*mu*pi*Lc/Acˆ2;

R45 = R23;

C13 = Au/(rho*g);

C46 = Al/(rho*g);

I = I12 + I56; % Fluid inertance [kg/m4]

R = R23 + R45; % Fluid resistance [kg/m4s]

C = C13*C46/(C13+C46); % Fluid capacitance [kg/m4s2]

Lu0 = 10; % Upper reservoir initial hydraulic head [m]

Ll0 = 30; % Lower reservoir initial hydraulic head [m]

p10 = Lu0*rho*g;

p60 = Ll0*rho*g;

K = -1/2*C*(p10-p60)ˆ2 - C*g*rho*Lc*(p10-p60);

P_16 = w(1);

Q = w(2);

Kinetic = 1/2*I*Qˆ2;

Potential = 1/2*C*P_16ˆ2 + C*g*rho*Lc*P_16 + K;

E_h = [Potential;...

Kinetic];

end
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A.3 Array of point absorbers

A.3.1 Reference model

%% Floater blanket simulation (ODE45)

clear all; clc;

load('coef_red.mat'); % Load Ared, Cred, Fred

global Nw wi Ared Cred Floaters Amplitude Phase tr Khs kPTO dPTO m

Floaters = 10;

m = 1500; % Buoy mass [kg]

g = 9.81; % Gravitational acceleration [m/s2]

rho_sw = 1025; % Sea water density [kg/m3]

Aw = 49; % Water area 7x7

Khs = Aw*rho_sw*g; % Buoyancy coefficient [kg/s2]

kPTO = 5.8e4; % Stiffness of PTO [Nm]

dPTO = 1.1e4; % Damping of PTO [Ns/m]

Nw = 17;

wi = w(Nw); % Wave frequency [rad/s]

Amplitude = abs(Fred(Nw,:)); % Excitation force amplitude [N]

Phase = angle(Fred(Nw,:)); % Excitation force phase [rad]

tr = 80; % Ramp time [s]

% Initial conditions

initial_x = zeros(Floaters,1);

initial_dx = zeros(Floaters,1);

tspan=[0 1000];

opts = odeset('MaxStep',0.001);

[t,x]=ode45( @motion_eq, tspan, [initial_x, initial_dx], opts );

function dxdt = motion_eq(t, x)

global Nw wi Ared Cred Floaters Amplitude Phase tr Khs kPTO dPTO m

if t<tr

Rf = 0.5*(1+cos(pi+pi*t/tr));

else

Rf = 1;

end

% Excitation force

Fe = [];

for k=1:Floaters

Fe = [Fe; Rf*Amplitude(k)*cos(wi*t-Phase(k))];

end

% Radiation force

Fr = -Cred(1:Floaters,1:Floaters,Nw)*x(Floaters+1:end);
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% Restoring force

Fhs = -Khs*x(1:Floaters);

% Spring-damper PTO force

Fpto = -kPTO*x(1:Floaters) - dPTO*x(Floaters+1:end);

% Buoy motion equation

dx = x(Floaters+1:end);

d2x = inv(m*eye(Floaters) + Ared(1:Floaters,1:Floaters,Nw) )*(Fe + Fhs +

Fpto + Fr);

dxdt=[dx; d2x];

end
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A.3.2 Parameter identification

load('coef_red.mat'); load('data_param_connection.mat');

n1 = n(9,:)'; n2 = n(10,:)';

dn1 = dn(9,:)'; dn2 = dn(10,:)';

y = Fw(10,:)';

global t n1 n2 dn1 dn2 y

[p S] = fminsearch(@distance_con, [1, 1000, 1, 1000]);

function r=distance_con(params)

lambda_alpha=params(1); k_alpha=params(2);

lambda_beta=params(3); k_beta=params(4);

global t n1 n2 dn1 dn2 y

A=[-lambda_alpha 0;

0 -lambda_beta];

B=[k_alpha 0;

0 k_beta];

C=[1 1];

D=[0 0];

sys=ss(A,B,C,D);

u = [n2-n1, dn2-dn1];

[y_model,t]=lsim(sys,u,t,[0 0]);

r = norm( y(4000001:end)-y_model(4000001:end) )

end
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A.3.3 Model

Figure A.3: Point absorbers 9 and 10 in Simulink

Figure A.4: Point absorbers 9 and 10 connection in Simulink

function y = Ocean_Connection(w)

global lamda_alpha k_alpha lambda_beta k_beta

alpha=w(1);

beta=w(2);

n1=w(3);

dn1=w(4);

n2=w(5);

dn2=w(6);

dalpha = -lamda_alpha*alpha + k_alpha*(n2-n1);

dbeta = -lambda_beta*beta + k_beta*(dn2-dn1);

Fw12 = alpha + beta;

y = [dalpha, dbeta, Fw12];

end

Modular modelling for the power take-off system of a wave energy converter 59




	Contents
	List of Figures
	List of Tables
	Introduction
	Renewable energy
	Ocean Grazer
	Introduction
	Multi-pump multi-piston power take-off system

	Goals of the thesis

	Theoretical background
	Coordinate system
	Sea waves
	Dynamical modelling
	Mechanical systems
	Fluid systems

	The port-Hamiltonian framework

	Point absorber model
	Model considered
	Floater motion equation
	Moving water body
	Buoy-piston ensemble
	Pumping hydraulic system
	Switched buoy-piston-pump system

	Power take-off system in the PH framework
	Mechanical subsystem
	Hydraulic subsystem
	Interconnected system

	Results
	Mechanical subsystem
	Hydraulic subsystem


	Array of point absorbers model
	Model considered
	Reference model
	Formulation
	Results

	Parameter identification

	Conclusions and further work
	Conclusions
	Recommendations

	Bibliography
	Appendix
	MATLAB code
	Mechanical subsystem
	Spring-damper model
	Spring-damper-inerter model

	Hydraulic subsystem
	Array of point absorbers
	Reference model
	Parameter identification
	Model



