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ABSTRACT

Microgrids (MGs) are cataloged as Low-Voltage (LV) distribution networks
which comprise distributed generators (DGs), energy storage devices and
controllable loads that can operate in grid connected and islanded mode.
The objective of this thesis is to introduce an alternative MG modeling
technique, different from known modeling methods, which may allow us to
obtain new control algorithms applicable to MGs. This modeling technique
based on complex power will be validated according to the results obtained
with the simulations of the model based on the Modified Nodal Analysis
(MNA) method that is based on currents and voltages.
To show this modeling technique, we will consider an MG composed by two
three-phase inverters feeding a resistive load (MG-2Inv-3f-RL) in islanded
mode.
We will demonstrate that the modeling technique is correct and feasible by
implementing the MNA-based method and the complex-based method. We
will check the complexity that the MNA-based modeling method acquires.
To achieve our goal, we will review the concepts of the MNA-based model-
ing method applied to a basic electrical circuit. We will use the Symbolic
Circuit Analysis in Matlab (SCAM) tool based on MNA, to automate the
modeling technique of a MG. We will perform the open-loop analysis and
simulation of the MNA-based MG model and the complex-based MG model.
Finally, after analyzing the stability of the complex-based model, we will
proceed to perform the closed-loop analysis and simulation implementing
the droop control strategy in the MNA-based model and the complex-based
model. Hence, we will verify the validity of the alternative complex-based
MG modeling technique.
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Modeling, simulation and control of Microgrids
Jorge Vásquez UPC-MUESAEI

1 Introduction
The continuous technological advances and the establishment of environ-
mental policies worldwide have motivated, since some years ago, research
on alternative energy generation sources such as renewables that reduces
global emissions of carbon and those derived from fossil fuels into the en-
vironment by the units typical power generation plants. In addition, the
increase in equipment, devices, computer applications and industrial pro-
cesses in all areas demand a greater amount of energy in the large intercon-
nected networks which could result in failures and supply cuts. These factors
have prompted researchers to delve into modern power systems, since places
where there is an over-demand for electricity until places where there is still
no access to it. In this context, Microgrids (MGs) have the potential to
support many problems faced by today’s power systems. Microgrids (MGs)
are defined as low-voltage (LV) distribution networks which comprise of
various distributed generation (DGs) units (photovoltaic arrays (PV), wind
generators, fuel-cells, microturbines, etc.), energy storage devices (flywheels,
super-capacitors and batteries) and controllable loads that can operate in-
terconnected or isolated from the large electrical network, and that can be
collectively treated by the network as a controllable load or generator [1].
The role of the energy storage devices in MG is to strike a balance between
energy generation and consumption especially during sudden changes in load
or generation [2].

In addition, most renewable DG units are interfaced to the network via
DC/AC inverters. The physical characteristics of such power electronic de-
vices largely differ from the characteristics of synchronous generators (SGs),
which are the standard generating units in existing power systems. Hence,
different control and operation strategies are needed in networks with a large
amount of renewable DG units [3].

A MG can be operated in two modes, such as grid-connected (on-grid)
mode and islanded (off-grid, emergency, autonomous) mode. In grid-connected
mode, the MG is connected to the main power grid and either receives power
or injects some power into it. In islanded mode, the MG is disconnected from
the main grid and it operates autonomously like physical islands [2].

Many new control problems arise for this type of networks and their sat-
isfactory solution may require the development of advanced controller design
techniques that will benefit from the availability of rigorous MG models. A
recent review on MG modeling can be found in [3].

Controlling in MG, mainly involves either controlling the active and re-
active power flowing through power inverters. Among the control strategies
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we have the PQ control scheme (grid-feeding mode) that adjusts the output
voltage amplitude and phase to control the active and reactive power.A re-
view on MG control research can be found in [2].

The purpose of this work is to introduce an alternative modeling tech-
nique for complex-based MGs, different from known modeling methods,
which may allow us to generate new control algorithms to apply them to
MGs. The results obtained with this complex-based modeling technique
will be validated with the results acquired by the Modified Nodal Analysis
(MNA) method using the same MG parameters.

The MNAmethod uses Kirchoff’s current law and is algorithmically more
efficient than the mesh current method or the node voltage method [5]. We
will review the concepts of the MNA-based modeling method and apply
them to a basic electrical circuit and to a MG composed by two single-phase
inverters feeding a resistive load.

We will automate the MNA-based MGmodeling technique with the Sym-
bolic Circuit Analysis in MatLab (SCAM) tool. This Matlab script allows
us to symbolically solve systems of equations in electrical circuits using a
netlist file that defines the interaction of the components in the MG nodes [6].

The result that we obtain with the MNA-based modeling method is de-
termined by the expression I(s) = G(s)V (s) where I(s) are the system
outputs corresponding to the currents of each inverter, G(s) is the system
transfer function and V (s) are the system inputs corresponding to the volt-
ages of each inverter.

To resulting expression cited above, we structure it in a transfer func-
tion model and later, we express it in a state space model. In this way, we
can obtain the power of each inverter as the product of the current and the
voltage and we simplify other calculation processes.

The analysis and simulation results in open loop that we obtain with the
MNA-based modeling method and the alternative complex-based modeling
technique of a MG composed by two three-phase inverters feeding a resistive
load, allow us to preliminarily validate the latter.

Finally, we discuss a stability analysis of the complex-based MG model.
We implement the droop control strategy to control and balance the power
that each MG inverter generates in the MNA-based model and in the complex-
based model [16].
The closed-loop simulation result of the model obtained with the complex-
based modeling technique and the MNA-based modeling method show the
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effect of the droop method and the equal power sharing function. These re-
sults also indicate the feasibility and confirm the validity of the alternative
complex-based MG modeling technique that we propose in this work.

The figure 1 illustrates the structure of the topics to be treated in this
work.

Microgrid  

Electrical Scheme

MNA-based 

Model

Active Power
Active and Reactive 

Power

where

Figure 1: Main scheme

1.1 Objectives

1.1.1 General Objective

Introduce an alternative MGmodeling technique, different from known mod-
eling methods, which allow us to obtain new control algorithms applicable
to MGs.

1.1.2 Specific Objectives

• Review the Modified Nodal Analysis Method (MNA) with a basic elec-
trical circuit, applying a manual analysis.

• Review the Symbolic Circuit Analysis in Matlab (SCAM) tool with a
basic electrical circuit, applying the MNA algorithms in the Matlab’s
script, and compare with the manual analysis.

• Apply the MNA method to a MG of two single-phase inverters with a
resistive load, performing a manual analysis and an automated analysis
using SCAM in Matlab, and compare the results.
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• Convert the result obtained with the MNA-based MGmodeling method
in Transfer Function (TF) model, to later transform it to State Space
(SS) model.

• Simulate and analyze the open loop behavior of the MG model of two
single-phase inverters with a resistive load, when the inverters’ voltage
and phase parameters are varied during runtime.

• Analyze and simulate the open-loop behavior of a MNA-based MG
model of two three-phase inverters with an resistive load, using SCAM
and Matlab functions, when the inverters’ voltage and phase parame-
ters are varied during runtime.

• Propose, analyze and simulate the open-loop behavior of a Complex-
based MG model of two three-phase inverters with an resistive load
using Matlab, and compare the results of the two models.

• Preliminary stability analysis of complex-based MG model.

• Implement and simulate the droop control strategy in the complex-
based and MNA-based MG model using Matlab, and compare the
results of the two models.

1.2 Document Structure

The document is organized as follows. Section 2 describes the Modified
Nodal Analisys (MNA) method used to obtain and solve the differential
equations that represent the interconnection of the components of a basic
electrical circuit. The concept of the MNA method is explained with a basic
electrical circuit and with MG model of two single-phase inverters with a
resistive load, modeling the MGs in state space. Section 3 shows the MNA-
based modeling method and simulation of a MG of two three-phase invert-
ers with a resistive load (MG-2Inv-3f-RL). Discuss the respective results.
Section 4 shows the complex-based modeling technique and simulation of
MG-2Inv-3f-RL in the αβ frame, with the respective results and their valu-
ation. Section 5 describes the stability analysis of complex-based MG model
and shows the effect of droop control strategy applied to MNA-based and
complex-based MG model in closed-loop. Discuss the validity of complex-
based MG modeling technique. Finally, Section 6 presents the conclusions
of this work.

2 Modified Nodal Analysis (MNA)

2.1 MNA Description

Despite the fact that the node voltage method and the mesh current method
are widely used in solving systems of equations related to electrical cir-
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cuits, there is a very practical and powerful method known as Modified
Nodal Analysis (MNA). The systems of equations obtained as a result of
the MNA, in general, are larger than the other methods mentioned, but
it can be implemented algorithmically more easily on a computer, being a
fundamental advantage to obtain automated solutions. In general terms, to
apply the MNA, an equation is written for each of the nodes not connected
to a voltage source and these equations are increased with an equation for
each voltage source [5].

The steps that are considered to apply the modified nodal analysis to a
circuit with n nodes (with m voltage sources) are presented below:

1. Identify the number of nodes (n) in the circuit, select a reference node
(usually ground) and mark the remaining nodes (n−1). Also indicate
the currents through each current source if you have them.

2. Label the current through each voltage source. We are going to use the
current flow convention from the positive node to the negative node
of the voltage source.

3. Apply Kirchhoff’s current law to each node. We will mark the currents
out of the node to be considered positive.

4. Write an equation for the voltage of each voltage source.

5. Solve the system of (n− 1 +m) unknowns.

2.1.1 Manual analysis applied to a simple electrical circuit

To put into practice the steps detailed previously, consider the simple resis-
tive circuit with independent voltage of figure 2 as an example:

+−V1

R1

R2 R3

Figure 2: Example of an electrical circuit proposed for the application of
MNA
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We apply, in figure 3, step 1 identifying the nodes of the electrical circuit
and assigning them a label where ground is reference node and the other
nodes named consecutively, each node being arbitrarily chosen.

+−V1

v1

R1

v2

R2 R3

node 1

node 2

reference node

Figure 3: Definition of nodes in the electric circuit proposed for the appli-
cation of MNA

The step 2 is applied, defining the current that passes through the voltage
sources in the direction of the positive node to the negative node, as shown
in electrical circuit of figure 4.

+−V1

IV1

v1

R1

v2

R2 R3

Figure 4: Definition of currents through voltage sources in the electrical
circuit proposed for the application of MNA

Proceed to step 3, applying Kirchoff’s current law (KCL) to each node
and considering the outgoing currents of the node as positive, as shown in
the figure 5 and it is observed in more detail in the table 1.
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+−V1

IV1

v1

R1

v2

R2 R3

KCL 1

KCL 2

Figure 5: Application of kirchhoff’s current law to each node in the electrical
circuit proposed for the application of MNA

After concluding with step 3, a voltage equation is determined in step 4
for each voltage source and, as the fifth and last step, we proceed to solve the
system of equations obtained from the electrical circuit, which is illustrated
in the table 1.
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Electrical circuit
section Node equation Matrix equation Ax = z

IV1 + iR1 = 0
⇒ IV1 + v1 − v2

R1
= 0

⇒ v1
R1
− v2
R1

+ IV1 = 0

A =


1

R1
− 1

R1
1

...
...

...
...

...
...


x =

 v1
v2
IV1


z =


0
...
...



iR1 + iR2 + iR3 = 0
⇒ v2 − v1

R1
+ v2
R2

+ v2
R3

= 0

⇒ − v1
R1

+
( 1
R1

+ 1
R2

+ 1
R3

)
v2 = 0

A =


1
R1

− 1
R1

1
− 1

R1

(
1

R1
+ 1

R2
+ 1

R3

)
0

...
...

...


x =

 v1
v2
IV1


z =

 0
0
...



v1 − 0 = V1
⇒ v1 = V1

A =


1
R1

− 1
R1

1
− 1
R1

(
1
R1

+ 1
R2

+ 1
R3

)
0

1 0 0


x =

 v1
v2
IV1


z =

 0
0

V1



Table 1: Process of obtaining the system of equations of the electrical circuit

MNA Method applied to a circuit with elements such asresistors, induc-
tors, capacitors and/or operational amplifiers op-amps and independent
current and voltage sources results in a matrix equation of the form:

Ax = z (2.1)
The formation of matrix equation (2.1) is illustrated step by step in detail
in the third column of the table 1.

1
R1

− 1
R1

1
− 1
R1

(
1
R1

+ 1
R2

+ 1
R3

)
0

1 0 0


︸ ︷︷ ︸

A

 v1
v2
IV1


︸ ︷︷ ︸

x

=

 0
0
V1


︸ ︷︷ ︸

z

(2.2)

The expression’s matrices obtained in (2.2) will also be obtained later in the
section 2.1.3, through computational algorithms using Matlab, as shown
in (2.28), (2.29) and (2.30).

To solve the equation of the circuit, a manipulation of the matrix equa-
tion (2.1) is carried out, obtaining the equation (2.3):

x = A−1z (2.3)
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The difficulty in solving this type of equation systems increases when a
manual analysis is performed according to the complexity of the electrical
circuit, but it is very easy and fast if we make use of computational tools
such as Matlab, as follows from (2.3): v1

v2
IV1


︸ ︷︷ ︸

x

=

 0 0 1
0 R1 R2 R3

R1 R2+R1 R3+R2 R3
R2 R3

R1 R2+R1 R3+R2 R3
1 R2 R3

R1 R2+R1 R3+R2 R3
− R2+R3
R1 R2+R1 R3+R2 R3


︸ ︷︷ ︸

A−1

 0
0
V1


︸ ︷︷ ︸

z

(2.4)

From (2.4), we note that we have obtained the inverse of matrix A and
solving the matrix equation for x symbolically using Matlab’s commands
x = inv(A) ∗ z, we have:

x =

 v1
v2
IV1

 =

 V1
R2 R3 V1

R1 R2+R1 R3+R2 R3

− V1 (R2+R3)
R1 R2+R1 R3+R2 R3

 (2.5)

The response of equations system, reflected in expression (2.5), will also be
obtained through computational algorithms in Matlab as shown in (2.31),
in section 2.1.3.

2.1.2 Matricial algorithmic MNA applied to a simple electrical
circuit

There is a way to use the MNA method algorithmically through the matrix
representation of graph theory known as the Laplacian matrix, admittance
matrix or Kirchhoff matrix [10] which helps us determine many properties
of graphs or circuits together with Kirchhoff’s theorem that we compete. In
this particular case, applied to electrical circuits with independent sources
of voltage and current, A matrix from expression (2.1) is formed as a com-
bination of four smaller matrices or sub-matrices G, B, C, D [11] and it is
(n+m)×(n+m) where n is the number of nodes without considerer refer-
ence node, and m is the number of independent voltage sources (2.6).

A =
[

G B
C D

]
(2.6)

• The G sub-matrix (n × n) is determined by the interconnections be-
tween the passive circuit elements (resistors, inductors, etc).

– Each element in the main diagonal of matrix G is equal to the
sum of the admittances (one over the impedance) of each element
connected in the respective node, that is, the first element of
the main diagonal corresponds to the sum of the admittances
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connected to node 1, the second element of the main diagonal
corresponds to the sum of the admittances connected to node 2,
and so on.

– The elements off the diagonal correspond to the negative admit-
tance of the element connected to the respective pair of nodes,
that is, the negative admittance of the element connected between
node 1 and node 2 would go in the position (1, 2) and (2, 1) of
matrix G, and so on.

According to the example electrical circuit in figure 3, the matrix G
that we obtain is shown at (2.7).

G =
[ 1

R1
− 1
R1

− 1
R1

1
R1

+ 1
R2

+ 1
R3

]
(2.7)

• The B sub-matrix (n × m) is determined by the connection of the
voltage sources.

– The elements of B sub-matrix only consist of 0, 1 and −1. Each
column represents each voltage source respectively, while each
row represents each node to which the terminals of the sources
are connected. If the positive terminal is connected to a node, a 1
is placed at that element’s position in the matrix. If the negative
terminal of the source is connected, −1 is placed in that corre-
sponding element. Any other case, the elements of the matrix are
0.

Returning to our example, the B sub-matrix obtained by applying this
rule is shown in (2.8).

B =
[
1
0

]
(2.8)

• The C sub-matrix (m × n) is determined by the connection of the
voltage sources. When independent sources are considered, then B
and C interrelate, in fact, C becomes the transposed B sub-matrix
(C = BT ).

– The rule mentioned in the previous paragraph does not apply
when dependent sources are present in the circuit.

In our example, where we have an independent voltage source, the C
sub-matrix is presented at (2.9).

C = BT =
[
1 0

]
(2.9)
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• The D sub-matrix (m ×m) is 0 if only independent sources are con-
sidered.

– The rule mentioned in the previous paragraph may not apply
when there are dependent sources in the circuit.

In our case, the D sub-matrix is composed of 0, as shown in (2.10).

D =
[
0
]

(2.10)

From the sub-matrices obtained G, B, C and D, we generate the block A
matrix in (2.11) being able to observe that we obtain the same A matrix
shown in (2.2), but in an algorithmic way through the graph.

A =


1
R1

− 1
R1

1
− 1
R1

1
R1

+ 1
R2

+ 1
R3

0
1 0 0

 (2.11)

The x matrix contains the unknowns of equations system of the circuit
and is formed by two smaller matrices or sub-matrices v and j, and this
is of order ((m + n) × 1) where n is the number of nodes without con-
siderer reference node, and m is the number of independent voltage
sources (2.12).

x =
[
v
j

]
(2.12)

• The v sub-matrix (n × 1) contains the unknowns of the voltages of
each respective node. In the proposed example of two nodes we obtain
the expression in (2.13).

v =
[
v1
v2

]
(2.13)

• The j sub-matrix (m × 1) contains the unknown of the current that
passes through each voltage source, therefore, from the example with
a voltage source, we have the expression in (2.14).

j =
[
IV1

]
(2.14)

From the sub-matrices obtained v and j, we generate the block x matrix
in (2.15) being able to observe that we obtain the same x matrix shown
in (2.2)

x =

 v1
v2
IV1

 (2.15)

19



Modeling, simulation and control of Microgrids
Jorge Vásquez UPC-MUESAEI

The z matrix contains the independent voltage and current sources and
is formed by two smaller matrices or sub-matrices i and e, and this is of order
((m+n)×1) where n is the number of nodes without considerer reference
node, and m is the number of independent voltage sources (2.16).

z =
[

i
e

]
(2.16)

• The i sub-matrix (n×1) contains the sum of the value of the indepen-
dent current sources in the corresponding node or 0 in the absence of
any. In the proposed example of two nodes we obtain the expression
in (2.17).

i =
[
0
0

]
(2.17)

• The e sub-matrix (m × 1) contains each element of the sub-matrix
equal to the value of the respective independent voltage source, there-
fore, from the example with a voltage source, we have the expression
in (2.18).

e =
[
V 1
]

(2.18)

From the sub-matrices obtained i and e, we generate the block z matrix
in (2.19) being able to observe that we obtain the same z matrix shown
in (2.2)

z =

 0
0
V1

 (2.19)

Finally, to obtain the solution of the equations system of an electric
circuit algorithmically, we use the method of block matrix inversion [11] in
matrix A (2.6) such that, if it is partitioned into 4 blocks as is our case, it
can be inverted blockwise (2.20) as follows:

A−1 =
[
G B
C D

]−1

=
[
G−1 + G−1B

(
D−CG−1B

)−1 CG−1 −G−1B
(
D−CG−1B

)−1

−
(
D−CG−1B

)−1 CG−1 (
D−CG−1B

)−1

]
(2.20)

where G, B, C, and D can be arbitrary size but G and D must be square
matrices so that they can be inverted. Furthermore, G and (D−CG−1B)
must be invertible.

Now, we are going to obtain a direct expression to obtain the currents of
each independent voltage source in the electrical circuit. What is done first
is to multiply both members of the expression in (2.3) by a matrix in such a
way that the voltage variables that I do not want to find are canceled and I
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leave the current variable in (2.15) that we require by means of the identity
matrix I depending on the number of voltje sources (2.21) (2.22).

Sx = SA−1z (2.21)

where:

S =
[
0 0
0 I

]

⇒ S =
[

0︸︷︷︸
n nodos

I︸︷︷︸
m fuentes

] (2.22)

Performing the operation on the term Sx we have (2.23)

Sx =
[
IVm

]
(2.23)

where the elements of current matrix depends on the m number of indepen-
dent voltage sources in the circuit. In the same way, with the term SA−1z
we have (2.24).

SA−1z =
[
0 I

] [G−1 + G−1B
(
D−CG−1B

)−1 CG−1 −G−1B
(
D−CG−1B

)−1

−
(
D−CG−1B

)−1 CG−1 (
D−CG−1B

)−1

] [
0
Vm

]

=
[
−
(
D−CG−1B

)−1 CG−1 (
D−CG−1B

)−1
] [ 0
Vm

]
=
[(

D−CG−1B
)−1

] [
Vm
]

(2.24)
where the elements of voltage matrix depends on its m number of indepen-
dent voltage sources in the circuit as in (2.23). Then the expression to find
the current using this method is represented in (2.25).[

IVm

]
=
[(

D−CG−1B
)−1

] [
Vm
]

(2.25)

After obtaining an expression in (2.25) that allows us to calculate the cur-
rents that pass through independent voltage sources in an electric circuit,
we verify in (2.26) that the algorithmic process using the Laplacian matrix
and the inversion of the block matrix in A matrix gives us the same current
values obtained in (2.5) of section 2.1.1 and in (2.31) of section 2.1.3 with
this example using Matlab as follows:

syms R1 R2 R3 V1
G=[1/R1 -1/R1 ;

-1/R1 1/R1+1/R2+1/R3];
B=[1;

0];
C=[1 0]; %C=B’;
D=[0];
I_V1 =[(D-C*G^-1*B)^-1]*V1
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I_V1 =
-(V1*(R2 + R3))/(R1*R2 + R1*R3 + R2*R3)

V1 (R2 + R3)
- ---------------------

R1 R2 + R1 R3 + R2 R3

Algorithm 1: Matrix algorithm solution of current vs voltage in Matlab’s
editor and command window

IV1 = − V1 (R2 +R3)
R1R2 +R1R3 +R2R3

(2.26)

In this way we can directly obtain the currents as a function of the volt-
ages in the transfer function model with the expression Y (s) = G(s)U(s),
where U(s) are the system inputs corresponding to the inverter voltages,
G(s) is the transfer function of the system and Y (s) are the outputs corre-
sponding to the currents that pass through each source or inverter.

2.1.3 SCAM computer analysis applied to a simple electrical cir-
cuit

As it is required to model and analyze MGs from multiple inverters, then
the scalability and ease of being able to deal algorithmically with systems
of very large equations is essential, and for this reason the use of a com-
putational tool is required to automate the process of solving equations
such as Matlab, which is a very powerful software to carry out all this type
of analysis and simulations at an academic and professional level. SCAM
(Symbolic Circuit Analysis in MatLab) describe the MATLAB tool that per-
forms MNA (Modified Nodal Analysis) for deriving and solving equations
systems symbolically on a electrical circuit, given a netlist file that defines
the interconnection between circuit components.

The code is written as a MATLAB script instead of a function because
it would make learning easier because it can be stepped through, and all
of the variables created by the code appear in the workspace so users can
examine and manipulate them. If you don’t want all of the variables in
your workspace, it is straightforward to add a line at the top to turn it into
a function. If you don’t want all the intermediate results printed, simply
comment out the lines you don’t want. We can find all information about
code and conventional notation in [6].

The SCAM tool cannot simply read a schematic diagram so we need to
develop a method for representing a circuit textually. This can be done using
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a device called a netlist that defines the interconnection between circuit
elements. If you have used SPICE (Simulation Program with Integrated
Circuit Emphasis) this is a familiar concept. SCAM requires a text file with
one line for each component in the circuit. Each type of component has its
own format for its corresponding lines in a file, as summarized in table 2.
The labels N1, N2, etc., correspond to the nodes in the circuit [6].

Component
Type Symbol SCAM Description

Resistor
1 kΩ

R1
N1 N2

R1 N1 N2 1000
*R1 is between nodes N1 and N2, and has a value of 1000 Ohms
*The value of the component must be written out (no abbreviations like kOhm) as a number.
*The name of the component is Rx, where x can be any combination of letters and numbers.
R1, Rabc, Ra1 are all valid names.

Capacitor
1 uF

C1
N1 N2 C1 N1 N2 1E-6

*Similar comments to the resistor

Inductor
1 mH

L1
N1 N2 L1 N1 N2 1E-3

*Similar comments to the resistor

Voltage Source

+−12 V
IV1 V1

N1

N2

V1 N1 N2 12
*Similar comments to the resistor
*Node N1 is connected to the positive node, N2 to the negative node.
*The current through the source is one of the unknowns, it is defined as shown

Current Source I1

N2

N1

I1 N1 N2 1
*Similar comments to the resistor
*Current flows out of node N1 and into node N2.

Op Amp N2 −

+N1
N3 O1 N1 N2 N3

*Similar comments to the resistor but with three nodes as shown.

Table 2: Component type format

The generic way to create the netlist file with the data required from
the circuit to operate SCAM is shown in table 3 considering a resistor as
an example, and having the option of giving a numerical value or leaving it
symbolic in case you want to have an analytical result where values will be
modified later.

Component Node+ Node- Numeric/Symbolic Value
R1 N1 N2 number or symbolic
...

...
...

...
...

...
...

...

Table 3: Netlist file format

Figure 6 shows a simple example for illustrative purposes. We start by
defining the nodes. The only restriction here is that the nodes must be
labeled such that ground is node 0, and the other nodes are named consec-
utively starting at 1. The choice of which number to assign to which node
is entirely arbitrary.
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+−12 V

1 kΩ
R1

2 kΩ
R2

2 kΩ
R3

1

2

0

V1

Figure 6: Example Circuit Nodes

The netlist file with .cir extension corresponding to the example in fig-
ure 6 is shown in table 4. The parameters of example circuit in figure 6 are

V1 1 0 12
R1 1 2 1000
R2 2 0 2000
R3 2 0 2000

Table 4: Netlist file

Parameter Symbol Value Unit
Voltage V1 12 V
Resistor R1 1 kΩ
Resistor R2 2 kΩ
Resistor R3 2 kΩ

Table 5: Example Circuit Parameters

ilustrated in table 5.
Let’s use the circuit in figure 6, we will create a text file containing the
netlist in table 4 and save it in the directory seen by Matlab. I edited
such a file (using the Matlab editor) and saved it in my SCAM directory
as example1.cir. To run the program, assign the filename of the circuit to
be analyzed to the variable fname, and then call the program. The output
from the Matlab window is shown in figure 7.
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Figure 7: SCAM tool process in Matlab’s command window

We can use these variables shown in (2.28) (2.29) (2.30) to recreate the
equations of the circuit in the form of (2.1), as it is shown in (2.27)

I_V1 + v_1
R1
− v_2

R1

v_2
(

1
R1

+ 1
R2

+ 1
R3

)
− v_1

R1

v_1

 =

 0
0

V1

 (2.27)

In figure 7, the netlist is displayed, followed by A matrix, x vector and
z vector as well as the matrix equations written out. Finally the values of
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the unknow variables are displayed.

A =


1
R1

− 1
R1

1
− 1
R1

1
R1

+ 1
R2

+ 1
R3

0
1 0 0

 (2.28)

x =

 v_1
v_2
I_V1

 (2.29)

z =

 0
0

V1

 (2.30)

As mentioned in section 2.1.1, we can see that each matrix represented
in (2.28), (2.29) and (2.30), obtained algorithmically by SCAM, are the
same as the matrices represented in expression (2.2) obtained analytically
using the MNA method.

The solution of equations system presented by the SCAM tool in Mat-
lab (2.31) is illustrated in the figure 7.

x =

 v_1
v_2
I_V1

 =

 V1
R2 R3 V1

R1 R2+R1 R3+R2 R3

− V1 (R2+R3)
R1 R2+R1 R3+R2 R3

 (2.31)

The solution of equations system (2.31) obtained by SCAM is the same
as solution (2.5) obtained analytically by applying MNA in the electrical
circuit, therefore, the use of Matlab’s SCAM tool for the analysis and reso-
lution of equations systems in electrical circuits in a more fluid and efficient
way is verified and confirmed.

Now, we can work with the expressions obtained through SCAM tool,
like the value of v_2 (the voltage at node 2) through matlab command
window, in this example,we have it in (2.31) and is shown in figure 8.

Figure 8: v_2 in Matlab command window

The value of I_V1 (the current through the voltage source) we have it
in (2.31) and is shown in figure 9.
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Figure 9: I_V1 in Matlab command window

In addition to the unknowns, several other variables are created in the
workspace (this is why the SCAM program is a script instead of a function).
The important variables created, in addition to the unknowns, are a value
corresponding to each of the elements. In figure 10 we can examine the value
of any element, for example V1 or R1.

Figure 10: Numeric value of V1 and R1 in Matlab command window

Figure 11 shows how we use these values from the workspace to ob-
tain numerical values for the unknowns displayed in figure 8 and figure 9
respectively.

Figure 11: Numeric values for the unknowns v_2 and I_V1 in Matlab
command window

Which shows that the voltage at node 2 is 6 volts, and the current
through V1 is 6 mA (into the positive node).

2.2 MNA method applied to MG of two single-phase invert-
ers with a resistive load

The procedure to symbolically analyze the MG single-phase electrical model
will follow the steps described in the section 2.1 referring to the example
electrical circuit illustrated in figure 2 and obtain the system of equations
as in the table 1 of each section of the electrical diagram.

Figure 12 shows the MG electrical scheme with two single-phase inverters
and a resistive load to be considered.
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V1

R1 L1 L2 R2

V2RL

Figure 12: Microgrid single-phase electrical scheme

2.2.1 Manual analysis

From the scheme of figure 12, we identify the nodes and label them consec-
utively considering the reference node, as shown in figure 13.

V1

v1
R1

v3

L1

v5

L2

v4

R2
v2

V2RL

node1 node3 node5 node4 node2

reference node

Figure 13: Microgrid single-phase electrical nodal scheme

The currents that pass through the voltage sources from the positive
node to the negative node are defined in the figure 14.

V1

IV 1

v1 R1

v3

L1

v5

L2

v4

R2 v2

V2

IV 2

RL

Figure 14: Currents through voltage sources in Microgrid single-phase elec-
trical scheme

We apply Kirchhoff’s currents law (KCL) in each node, considering as
positive those that leave it, as shown in the figure 15. Then, we obtain the
voltage equation of each voltage source and obtain the system of equations
as illustrated in the table 6.
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V1

IV 1

v1 R1

v3

L1

v5

L2

v4

R2 v2

V2

IV 2

RL

KCL1 KCL3 KCL5 KCL4 KCL2

Figure 15: Kirchhoff’s currents law in Microgrid single-phase electrical nodal
scheme

The application of MNA to circuits with inductors and/or capacitors is
very simple and practical if we use their complex impedance, where:

ZR =R (2.32)
ZL =jωL = sL (2.33)

ZC = 1
jωC

= 1
sC

(2.34)

In this case, as it is a resistive-inductive circuit, we will use the complex
impedance in (2.32) and (2.33) respectively.
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Electrical circuit section Node equation Matrix equation Ax = z

IV1 + iR1 = 0
⇒ IV1 + v1 − v3

R1
= 0

⇒ v1
R1
− v3
R1

+ IV1 = 0

A︷ ︸︸ ︷

1
R1

0 − 1
R1

0 0 1 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...



x︷ ︸︸ ︷

v1
v2
v3
v4
v5
IV1
IV2


=

z︷ ︸︸ ︷

0
...
...
...
...
...
...



IV2 + iR2 = 0
⇒ IV2 + v2 − v4

R2
= 0

⇒ v2
R2
− v4
R2

+ IV2 = 0



1
R1

0 − 1
R1

0 0 1 0
0 1

R2
0 − 1

R2
0 0 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...





v1
v2
v3
v4
v5
IV1
IV2


=



0
0
...
...
...
...
...



iR1 + iL1 = 0
⇒ v3 − v1

R1
+ v3 − v5

sL1
= 0

⇒ − v1
R1

+
( 1
R1

+ 1
sL1

)
v3 −

v5
sL1

= 0



1
R1

0 − 1
R1

0 0 1 0
0 1

R2
0 − 1

R2
0 0 1

− 1
R1

0
(

1
R1

+ 1
sL1

)
0 − 1

sL1
0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...





v1
v2
v3
v4
v5
IV1
IV2


=



0
0
0
...
...
...
...



iR2 + iL2 = 0
⇒ v4 − v2

R2
+ v4 − v5

sL2
= 0

⇒ − v2
R2

+
( 1
R2

+ 1
sL2

)
v4 −

v5
sL2

= 0



1
R1

0 − 1
R1

0 0 1 0
0 1

R2
0 − 1

R2
0 0 1

− 1
R1

0
(

1
R1

+ 1
sL1

)
0 − 1

sL1
0 0

0 − 1
R2

0
(

1
R2

+ 1
sL2

)
− 1

sL2
0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...





v1
v2
v3
v4
v5
IV1
IV2


=



0
0
0
0
...
...
...



iL1 + iL2 + iRL = 0
⇒ v5 − v3

sL1
+ v5 − v4

sL2
+ v5
RL

= 0

⇒ − v3
sL1
− v4
sL2

+
( 1
sL1

+ 1
sL2

+ 1
RL

)
v5 = 0



1
R1

0 − 1
R1

0 0 1 0
0 1

R2
0 − 1

R2
0 0 1

− 1
R1

0
(

1
R1

+ 1
sL1

)
0 − 1

sL1
0 0

0 − 1
R2

0
(

1
R2

+ 1
sL2

)
− 1
sL2

0 0
0 0 − 1

sL1
− 1

sL2

(
1

sL1
+ 1

sL2
+ 1

RL

)
0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...





v1
v2
v3
v4
v5
IV1
IV2


=



0
0
0
0
0
...
...



v1 − 0 = V1
⇒ v1 = V1



1
R1

0 − 1
R1

0 0 1 0
0 1

R2
0 − 1

R2
0 0 1

− 1
R1

0
(

1
R1

+ 1
sL1

)
0 − 1

sL1
0 0

0 − 1
R2

0
(

1
R2

+ 1
sL2

)
− 1
sL2

0 0
0 0 − 1

sL1
− 1
sL2

(
1
sL1

+ 1
sL2

+ 1
RL

)
0 0

1 0 0 0 0 0 0
...

...
...

...
...

...
...





v1
v2
v3
v4
v5
IV1
IV2


=



0
0
0
0
0

V1
...



v2 − 0 = V2
⇒ v2 = V2



1
R1

0 − 1
R1

0 0 1 0
0 1

R2
0 − 1

R2
0 0 1

− 1
R1

0
(

1
R1

+ 1
sL1

)
0 − 1

sL1
0 0

0 − 1
R2

0
(

1
R2

+ 1
sL2

)
− 1
sL2

0 0
0 0 − 1

sL1
− 1
sL2

(
1
sL1

+ 1
sL2

+ 1
RL

)
0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0





v1
v2
v3
v4
v5
IV1
IV2


=



0
0
0
0
0
V1
V2



Table 6: Process of obtaining the equations system of Microgrid single-phase
electrical scheme

From the matrix equation (2.1) of the form Ax = z, we have the system
of equations (2.35) shown in table 6.



1
R1

0 − 1
R1

0 0 1 0
0 1

R2
0 − 1

R2
0 0 1

− 1
R1

0
(

1
R1

+ 1
sL1

)
0 − 1

sL1
0 0

0 − 1
R2

0
(

1
R2

+ 1
sL2

)
− 1
sL2

0 0
0 0 − 1

sL1
− 1
sL2

(
1
sL1

+ 1
sL2

+ 1
RL

)
0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0


︸ ︷︷ ︸

A



v1
v2
v3
v4
v5
IV1
IV2


︸ ︷︷ ︸

x

=



0
0
0
0
0
V1
V2


︸ ︷︷ ︸

z

(2.35)

The solution of the system of equations, using the matrix equation
in (2.3) of the form x = A−1z through Matlab’s functions, is shown in (2.36)
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

v1
v2
v3
v4
v5
IV1
IV2


=



V1
V2

V1 (R2 RL+L1 R2 s+L1 RL s+L2 RL s+L1 L2 s2)
R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2 + R1 RLV2

R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2

V2 (R1 RL+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2)
R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2 + R2 RLV1

R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2
V2 (R1 RL+L1 RL s)

R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2 + V1 (R2 RL+L2 RL s)
R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2

RLV2
R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2 − V1 (R2+RL+L2 s)

R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2
RLV1

R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2 − V2 (R1+RL+L1 s)
R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2


(2.36)

2.2.2 SCAM computer analysis

The process for the equations nodal analysis of the MG single-phase electri-
cal model using SCAM tool in Matlab will follow the steps described in the
section 2.1.3 referring to the electrical diagram of the figure 12, as shown in
figure 16.

V1

R1 L1 L2 R2

V2RL

1 3 5 4 2

0 0 0

Figure 16: Definition of nodes for SCAM netlist in Microgrid single-phase
electrical scheme

The netlist file with .cir extension corresponding to MG single-phase
electrical model in figure 12 is shown in table 7. The netlist column where
the expression symbolic is represented instead of numerical values, allows
us to later assign the values to the variables related to the components of
the electrical circuit, when we want to carry out tests with different values
directly from MATLAB editor or command window, without modifying the
file with a .cir extension to carry out this task.

V1 1 0 symbolic
V2 2 0 symbolic
L1 3 5 symbolic
L2 4 5 symbolic
R1 1 3 symbolic
R2 2 4 symbolic
RL 5 0 symbolic

Table 7: Netlist file of MG single-phase electrical nodal scheme
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We can use these variables shown in (2.38) (2.39) (2.40) to recreate the
equations of the circuit in the form of (2.1), as it is shown in (2.37)

IV1 + v1
R1
− v3

R1
IV2 + v2

R2
− v4

R2

v3
(

1
R1

+ 1
L1 s

)
− v1

R1
− v5

L1 s

v4
(

1
R2

+ 1
L2 s

)
− v2

R2
− v5

L2 s

v5
(

1
RL + 1

L1 s
+ 1

L2 s

)
− v3

L1 s
− v4

L2 s

v1
v2


=



0
0
0
0
0
V1
V2


(2.37)

From the data entered in the netlist file of table 7 corresponding to the circuit
of figure 12, the SCAM tool gives us the values of the A matrix (2.38), x
vector (2.39) and z vector (2.40), followed by the approach (2.37) and solving
the system of equations using the MNA method.

A =



1
R1

0 − 1
R1

0 0 1 0
0 1

R2
0 − 1

R2
0 0 1

− 1
R1

0 1
R1

+ 1
L1 s

0 − 1
L1 s

0 0
0 − 1

R2
0 1

R2
+ 1

L2 s
− 1
L2 s

0 0
0 0 − 1

L1 s
− 1
L2 s

1
RL + 1

L1 s
+ 1

L2 s
0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0


(2.38)

x =
[
v1 v2 v3 v4 v5 IV1 IV2

]T
(2.39)

z =
[

0 0 0 0 0 V1 V2
]T

(2.40)

2.3 Transfer Function (TF) model to State Space (SS) model
from MNA solution

The solution obtained with SCAM is given by the matricial expression
in (2.3) as x = A−1z the same that is translated in the expression (2.41),
where the matrices z ≡ U(s) are the system inputs corresponding to the
inverter voltages, the matrices A−1 ≡ G(s) are the transfer function of the
system and the matrices x ≡ Y (s) are the outputs corresponding to the
currents that pass through each inverter in Multiple Input Multiple Output
(MIMO) systems. Information about modeling in state space can be found
in [8].
The general expression of the transfer function matrix in a multivariate sys-
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tem is given as follows

Y (s) =G(s)U(s) (2.41)

=
[
C (sI −A)−1B +D

]
U(s) (2.42)

⇒

Y1(s)
...

Yq(s)

 =


n11(s)
d11(s) . . .

n1p(s)
d1p(s)

... . . .
...

nq1(s)
dq1(s) . . .

nqp(s)
dqp(s)


U1(s)

...
Up(s)

 (2.43)

To understand how to go from transfer function to state space in general in
a MIMO system [12], we take as an example a transfer function matrix with
two inputs and two outputs as follows[

Y1(s)
Y2(s)

]
=
[ 1

(s+a)(s+b)
1

(s+b)(s+d)
1

(s+a)(s+c)
1

(s+c)(s+d)

]
︸ ︷︷ ︸

G(s)

[
U1(s)
U2(s)

]
(2.44)

We treat the MIMO system (2.44) as two MISO systems with respect to each
output Y1 and Y2 after obtaining the least common polynomial denominator

1
(s+b) and 1

(s+c) respectively, and the state variables are defined as follows

Z11(s) ∆= U1(s)
(s+a) Z21(s) ∆= U2(s)

(s+d)
˙z11 + az11 = u1(t) ˙z21 + dz21 = u2(t)
x1

∆= z11 x2
∆= z21

ẋ1 = −ax1 + u1(t) ẋ2 = −dx2 + u2(t)

(2.45)

With the state variables defined in (2.45) and the least common denominator
obtained above, we can write the matrix of the system’s transfer function as[

Y1(s)
Y2(s)

]
=

 z11(s)
(s+b) + z21(s)

(s+b)
z11(s)
(s+c) + z21(s)

(s+c)

 (2.46)

From the standard canonical form of SISO systems [13], the system in (2.46)
can be viewed as two separate two-input and one-output systems with the
state-space representation as follow

ẏ1 + by1 = z11 + z21 ẏ2 + cy2 = z11 + z21

x3
∆= y1 x4

∆= y2
ẋ3 = −bx3 + x1 + x2 ẋ4 = −cx4 + x1 + x2

(2.47)

Finally, we have the matrix representation of the system in state space by
grouping all the differential equations involving the state variables, as follows
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in (2.48) (2.49) whose order state four is the minimum verifiable in [14] under
the parameters of this example.

ẋ1
ẋ2
ẋ3
ẋ4

 =


−a 0 0 0
0 −d 0 0
1 1 −b 0
1 1 0 −c


︸ ︷︷ ︸

A


x1
x2
x3
x4

+


1 0
0 1
0 0
0 0


︸ ︷︷ ︸

B

[
u1
u2

]
(2.48)

[
y1
y2

]
=
[
0 0 1 0
0 0 0 1

]
︸ ︷︷ ︸

C


x1
x2
x3
x4

 (2.49)

In order to express the internal representation, two matrix equations will
be needed: the state equation (2.50) and the output equation (2.51).

ẋ(t) =Ax(t) +B u(t) (2.50)
y(t) =C x(t) +Du(t) (2.51)

where:
A: Status matrix
B: Input matrix
C: Output matrix
D: Direct input-output coupling matrix

Before going on to see how these matrices can be obtained, the case of
multivariable continuous systems will be considered, where it is considered
that the system has p inputs and q outputs, known as the MIMO system
(Multiple inputs Multiple outputs) represented in the figure 17 :

Figure 17: Multiple Input Multiple Output System

The approach for these systems is to work with n first order equations,
where you do not have a single input and output, but a vector with the
inputs (2.52) and another with the outputs (2.53) of system:
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u(t) =


u1(t)
u2(t)
...

up(t)

 (2.52)

y(t) =


y1(t)
y2(t)
...

yq(t)

 (2.53)

Expressed in matrix form, what is known as the state equation (2.54)
and the output equation (2.55) is obtained.


ẋ1(t)
ẋ2(t)
...

ẋn(t)

 =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
... . . . ...

an1 an2 an3 . . . ann


︸ ︷︷ ︸

A


x1(t)
x2(t)
...

xn(t)

+


b11 b12 . . . b1p
b21 b22 . . . b2p
...

... . . . ...
bn1 bn2 . . . bnp


︸ ︷︷ ︸

B


u1(t)
u2(t)
...

up(t)


(2.54)

y1(t)
y2(t)
...

yq(t)

 =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

... . . . ...
cq1 cq2 . . . cqn


︸ ︷︷ ︸

C


x1(t)
x2(t)
...

xn(t)

 (2.55)

As can be seen, in this case B will be the input matrix of dimensions n× p
and C the matrix q × n of output of the system.

2.3.1 Computer analysis applied to MG of two single-phase in-
verters with a resistive load

From the solution obtained by SCAM, the section that interests me includes
the equations that relate the currents as a function of the voltages expressed
in (2.43) that was explained in section 2.3, and I obtain the matrix of transfer
functions that relates each output to each input of the system using Matlab
functions. To obtain the transfer function (2.56) it is necessary to know
that the inputs of the electrical circuit correspond to the voltage and the
outputs thereof corresponding to the currents in each independent voltage
source. In this work, two single-phase sources V1 and V2 are presented, and

35



Modeling, simulation and control of Microgrids
Jorge Vásquez UPC-MUESAEI

as outputs of the system we have currents IV 1 and IV 2 respectively.

Gi,i(s) = Y (s)
U(s) = IVi(s)

Vi(s)
, i = 1, 2 (2.56)

With the values obtained from the SCAM tool and stored in the workspace,
we extract the output variables IV 1 (2.57) and IV 2 (2.59), each based on
inputs V1 and V2.

IV1(s) = R2 V1 +RL V1 −RL V2 + L2 V1 s

R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2 (2.57)

⇒ IV1(s) =
(

R2 +RL + L2 s

R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2

)
V1

+
( −RL
R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2

)
V2

(2.58)

In order to more easily recognize the coefficients of each input variable V1
and V2, we make use of the coeffs command, obtaining better equations
distributed in (2.58) and (2.60).

IV2(s) = R1 V2 −RL V1 +RL V2 + L1 V2 s

R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2 (2.59)

⇒ IV2(s) =
( −RL
R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2

)
V1

+
(

R1 +RL + L1 s

R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2

)
V2

(2.60)

In this work we have a system with two inputs and two outputs, in which
each output depends on the two inputs, therefore, we will have a 2×2 matrix
with four transfer functions corresponding to (2.61).

G(s) =
[
G1,1(s) G1,2(s)
G2,1(s) G2,2(s)

]
(2.61)

Starting from (2.58) and (2.60), each component as a transfer function corre-
sponding to each output depending on each input, is detailed in (2.62) (2.63)
(2.64) (2.65).

G1,1(s) = IV1(s)
V1(s) =

(
R2 +RL + L2 s

R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2

)
(2.62)

G1,2(s) = IV1(s)
V2(s) =

( −RL
R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2

)
(2.63)

G2,1(s) = IV2(s)
V1(s) =

( −RL
R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2

)
(2.64)
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G2,2(s) = IV2(s)
V2(s) =

(
R1 +RL + L1 s

R1R2 +R1RL +R2RL + L1R2 s+ L2R1 s+ L1RL s+ L2RL s+ L1 L2 s2

)
(2.65)

G(s) =
[

R2+RL+L2 s
R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2 − RL

R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2

− RL
R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2

R1+RL+L1 s
R1 R2+R1 RL+R2 RL+L1 R2 s+L2 R1 s+L1 RL s+L2 RL s+L1 L2 s2

]
(2.66)

Parameter Symbol Value Unit
Inversor 1 V1 155 Vp
Inversor 2 V2 155 Vp
Resistor 1 R1 3 Ω
Resistor 2 R2 3 Ω

Resistor Load RL 1 kΩ
Inductor 1 L1 10 mH
Inductor 2 L2 10 mH

Table 8: MG single-phase model parameters

To obtain the results with numerical values, we use the subs command
in MATLAB considering the MG parameters shown in table 8, achieving a
2× 2 matrix of four transfer functions (2.67) as follow.

⇒ G(s) =



s
100 + 1003

s2

10000 + 1003 s
50 + 6009

− 1000
s2

10000 + 1003 s
50 + 6009

− 1000
s2

10000 + 1003 s
50 + 6009

s
100 + 1003

s2

10000 + 1003 s
50 + 6009

 (2.67)

We now proceed to perform the system analysis on a state space model.
To express the state of the system, matrices and vectors will be used as a
working tool, which is very suitable for expressing calculations and opera-
tions in computational terms.

To obtain matrices A (2.69), B (2.70), C (2.71) and D (2.72), from the
transfer matrix G(s) of the whole system that groups the two outputs based
on the two inputs (2.67), we use the script, shown below (listing 2), to
convert it in an object type tf (transfer function Gtf), and this in turn,
transform into an object type ss (state space Gss) with the command of the
same name (2.68), where we can practically obtain the required matrices to
continue with the analysis of this work in a state space model.

Gss = ss (Gtf) (2.68)
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s = tf(’s’); % Make Generic Transfer Function Simple
[rows ,columns ]=size(G); % Rows and Columns of G

Matrix ( Various Func. Transf )
Gtf = tf(zeros(size(G)));
for fil=1: rows

for col=1: columns
Gtf(fil ,col)=eval(char(G(fil ,col)));
end

end

Algorithm 2: Transfer function Matlab script

Once we have the model in state space in ss format, we can extract the
model components that refer to the matrices A (2.69), B (2.70), C (2.71)
and D (2.72) respectively.

A =Gss.A =


−2.006e5 −7335 0 0

8192 0 0 0
0 0 −2.006e5 −7335
0 0 8192 0

 (2.69)

B =Gss.B =


64 0
0 0
0 64
0 0

 (2.70)

C =Gss.C =
[
1.562 19.13 0 −19.07

0 −19.07 1.562 19.13

]
(2.71)

D =Gss.D =
[
0 0
0 0

]
(2.72)

2.3.2 Simulation of MG of two single-phase inverters with a re-
sistive load

The simulation of the MG single-phase electrical model has been performed
with a Matlab script using Euler (2.75) for the states equation (2.50) and
the outputs equation (2.51), where the matrices A (2.69), B (2.70), C (2.71)
and D (2.72) obtained in the previous section are used .

A simulation time tf = 0.1 seconds has been configured, with steps
ts = 1e− 6, a frequency ω = 2πf = 2π(60). In this work, we assume a
phase of the first voltage source ϕ1 = 0 and a range of values for the phase
of the second voltage source ϕ2 = 0 : 0.0001 : 0.001 in order to compare the
behavior of the system when the two sources gradually phase out of each
other and observe the voltage, current and power signals graphically.
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We use input one (2.73) and input two (2.74)of voltage as a function of
a sine:

u1(t) =u0 sin (ω t + ϕ1) , u0 = 155 (2.73)
u2(t) =u0 sin (ω t + ϕ2) , u0 = 155 (2.74)

To perform this simulation, we use Euler in the states equation (2.50) as
shown in (2.75):

x(i + 1) =x(i) + ts _x

⇒ x(i + 1) =x(i) + ts (A x(i) + B u) , i = 0 : length
(

tf

ts

) (2.75)

And the output equation (2.51), in this example, is given by (2.76);

I = C x (2.76)

Because the values we obtain for voltage and current are stored in a vec-
tor format according to the number of inputs and outputs of the system, it
is simple to obtain the power with the product of these two variables. Simi-
larly, to calculate the rms power, you only need to apply the rms command
to the power and save it vectorially to make the graphs.

Using Matlab script (Section 7.1.1), we obtain the graph corresponding
to current, voltage and power of each source. We have carried out the test
with four options:

• Using two input sources with equal voltages and same phase.

• Using two input sources with different voltages and same phase.

• Using two input sources with equal voltages, but out of phase.

• Using two input sources with different voltages, but out of phase.

In figure 18, we observe the dynamics of the system referring to the
voltage signal (subfigure 18a), the current signal (subfigure 18b), the active
power signal (subfigure 18c) and the rms power signal (subfigure 18d) of the
two sources of equal magnitude and phase during the established simulation
time.
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Figure 18: System dynamics when two input sources with equal voltages
and equal phases operate during the simulation time.

The graph in subfigure 18d corresponds to the rms power of each source
as a function of phase ϕ2 of the second. In this it can be seen that both
sources deliver the same power, therefore, the rms power remains constant.

We observe in figure 19 the dynamics of the system regarding the voltage
signal (subfigure 19a), the current signal (subfigure 19b), the active power
signal (subfigure 19c) and the rms power signal (subfigure 19d) of the two
sources of different magnitude and of the same phase during the established
simulation time.
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Figure 19: System dynamics when two input sources with different voltages
and equal phases operate during the simulation time.

In the subfigure 19a, the signal of V1 with a peak voltage of 155 volts
and V2 with a peak voltage of 169 volts are shown, keeping the phases the
same. By having the different voltages, there is an increase in current and
a phase shift between the two sources as seen in subfigure 19b. The cur-
rents of greater magnitude in subfigure 19c produce powers of considerable
magnitude with respect to the powers displayed in subfigure 18c. The sub-
figure 19d corresponds to the rms power of each source as a function of phase
ϕ2 of the second. In this it can be seen that both sources deliver different
powers but they remain constant during the simulation time.

Figure 20 shows the dynamics of the system with respect to the voltage
signal (subfigure 20a), the current signal (subfigure 20b) and the active
power signal (subfigure 20c) when the simulation starts with the phases
ϕ1 = ϕ2 = 0. Then, it shows the dynamics of the system with respect to
the voltage signal (subfigure 20d), the current signal (subfigure 20e) and
the active power signal (subfigure 20f) when the simulation ends with the
phases ϕ1 = 0 and ϕ2 = 0.001. The phase difference between ϕ1 and ϕ2 of
the source voltage signal is programmed in Matlab in a range of 0 to 0.001
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with phase increment steps of 0.0001 in ϕ2 to illustrate the behavior of these
signals.
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Figure 20: System dynamics when two input sources with equal voltages
and different phases operate during the simulation time.

The out of phase effect of the voltage of the second source is evident in
the current I2 and I1 shown in the subfigure 20e, since there is an increase
and decrease in their magnitudes respectively, in addition to the phase dif-
ference between these, which It also causes a similar effect on the power P1
and P2 appreciable in subfigure 20f.

The rms power of each source as a function of phase ϕ2 of the second is
shown in figure 21 . The rms power delivered by each source varies depending
on the phase between them, that is, when the phase ϕ2 is increased by a
rate of 0.0001 and the phase ϕ1 remains fixed, therefore, the power P2 of
the second source increases while the power P1 of the first source decreases
in the same proportion.
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Figure 21: RMS Active Power

Figure 22 shows the dynamics of the system with respect to the voltage
signal (subfigure 22a), the current signal (subfigure 22b) and the signal
active power (subfigure 22c) when the simulation starts with phases ϕ1 =
ϕ2 = 0. Next, it shows the system dynamics with respect to the voltage
signal (subfigure 22d), the current signal (subfigure 20e) and the active
power signal (subfigure 22f) when the simulation ends with phases ϕ1 = 0
and ϕ2 = 0.001 to illustrate the behavior of these signals.
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Figure 22: System dynamics when two input sources with different voltages
and different phases operate during the simulation time.

The magnitude and out of phase effect of the voltage of the second source
is evident in the current I2 and I1 shown in the subfigure 22e, since there is an
increase and decrease in their magnitudes respectively, in addition to a sig-
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nificant phase difference phase between these, which It also causes a similar
effect on the power P1 and P2 appreciable in subfigure 22c and subfigure 22f.

The rms power of each source as a function of phase ϕ2 of the second is
shown in figure 23 . The rms power delivered by each source varies depending
on the phase between them, that is, when the phase ϕ2 is increased by a
rate of 0.0001 and the phase ϕ1 remains fixed, therefore, the powers P2 and
P1 have a behavior similar to that of the subfigure 19d, where the sources
deliver a different power to each other constantly but with a slight increase
while the programmed out of phase occurs during the simulation time.
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Figure 23: RMS Active Power

2.4 Pros and Cons from TF model to SS model since MNA
solution

By applying the transformation of the transfer function model to the state
space model of the solution obtained through SCAM, we have the Pros as
follows

• The power is obtained directly with the product of the current and the
voltage, because in the transfer function model we would have to apply
the integral of the convolution of the product of the current and the
voltage, and this makes the analysis become more difficult to analyze
and automate using algorithms in Matlab.

• A better perception of the interaction of the components of the MG
is achieved through the matrices A, B, C and D of state space model,
which is very easy to apply in Matlab through functions known as tf
and ss .

Among the Cons that can be highlighted we have:

44



Modeling, simulation and control of Microgrids
Jorge Vásquez UPC-MUESAEI

• A considerable dimension of the matrices A, B, C and D in the state
space model when the MG gets bigger and bigger, i.e. when it is
composed of a significant number of investors.

• As a result of the point mentioned above, the intuition and facolity of
analysis that is carried out with MGs of a larger volume of investors
would be widely overshadowed, which makes it difficult for us to un-
derstand the behavior of the system in better detail. This situation is
not observed in the case of the MG of two single-phase inverters with
a resistive load, but in the case of the MG of two three-phase inverters
with a resistive load we can clearly notice it.

3 MNA-based modeling and analysis of MG of two
three-phase inverters with a resistive load

In the previous sections, methods of analysis of systems of equations related
to electrical circuits such as MNA have been applied manually and in an
automated way through SCAM in Matlab, and we have been able to verify
in each section that the results obtained with these methods are The same
and therefore, the modeling of MGs using automated algorithms in Matlab
are perfectly applicable and scalable to various inverters, reducing the time
involved in a manual analysis of circuits of this size.

3.1 Electrical scheme of three-phase MG

Said the above, we are going to analyze a MG with two three-phase inverters
(V1a, V1b, V1c and V2a, V2b, V2c) with a pure resistive star load (RLa,RLb, RLc),
considering that the lines or nodes that interconnect the MG inverters have
resistive-inductive (R1a,1b,1c, L1a,1b,1c) and (R2a,2b,2c, L2a,2b,2c) characteris-
tics. Figure 24 shows the MG electric scheme being considered with the
respective nodes identified for the creation of the netlist file that SCAM will
use in its execution.

RLa RLb RLc

00

V1a

1 R1a 4 L1a 7 L2a 10 R2a 13

V2a

0

V1b

2 R1b 5 L1b 8 L2b 11 R2b 14

V2bV1c

3

R1c 6 L1c 9 L2c 12 R2c

15

V2c

Figure 24: Microgrid three-phase electrical nodal scheme
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3.2 SCAM computer analysis of equations

The netlist file with .cir extension corresponding to MG three-phase elec-
trical model in figure 24 is shown in table 9. The netlist column where the
expression symbolic is represented instead of numerical values, allows us to
later assign the values to the variables related to the components of the elec-
trical circuit, when we want to carry out tests with different values directly
from MATLAB editor or command window, without modifying the file with
a .cir extension to carry out this task.

V1a 1 0 Symbolic
V1b 2 0 Symbolic
V1c 3 0 Symbolic
V2a 13 0 Symbolic
V2b 14 0 Symbolic
V2c 15 0 Symbolic
L1a 4 7 Symbolic
L1b 5 8 Symbolic
L1c 6 9 Symbolic
L2a 10 7 Symbolic
L2b 11 8 Symbolic
L2c 12 9 Symbolic
R1a 1 4 Symbolic
R1b 2 5 Symbolic
R1c 3 6 Symbolic
R2a 13 10 Symbolic
R2b 14 11 Symbolic
R2c 15 12 Symbolic
RLa 7 0 Symbolic
RLb 8 0 Symbolic
RLc 9 0 Symbolic

Table 9: Netlist file of MG three-phase electrical nodal scheme

From the data entered in the netlist file of table 9 corresponding to the
circuit of figure 24, the SCAM tool gives us the values of the A matrix (3.3),
x vector (3.1) and z vector (3.2), followed by the approach (3.4) and solving
the system of equations using the MNA method.

x =
[
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 IV1a IV1b IV1c IV2a IV2b IV2c

]T (3.1)

z =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V1a V1b V1c V2a V2b V2c
]T (3.2)
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0
0
0

V1a
V1b
V1c
V2a
V2b
V2c



(3.4)

The expression in (3.4) show us th equations system that represent compo-
nents interconnection in the proposed MG.
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                                          
(3
.3
)
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3.3 Computer analysis of State Space model

Once SCAM obtains the solution, my interest turns to the equations that
relate the currents as a function of the voltages expressed in (2.43) that was
explained in section 2.3, and I obtain the matrix of transfer functions that
relate each output to each input of the system using Matlab functions. To
obtain the transfer function (3.5) it is necessary to know that the inputs of
the electrical circuit correspond to the voltage in each source or inverter.
In this work, two three-phase sources V1a, V1b, V1c and V2a, V2b, V2c are
presented, and as outputs of the system we have currents IV 1a, IV 1b, IV 1c
and IV 2a, IV 2b, IV 2c respectively.

Gij(s) = Y (s)
U(s) = IVij(s)

Vij(s)
, i = 1, 2 j = a, b, c (3.5)

With the values obtained from the SCAM tool and stored in the workspace,
we extract the output variables IV 1a (3.6), IV 1b (3.8), IV 1c (3.10) and IV 2a (3.12),
IV 2b (3.14), IV 2c (3.16), each based on inputs V1a, V1b, V1c and V2a, V2b, V2c.

IV1a(s) = R2a V1a + RLa V1a− RLa V2a + L2a V1a s
R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

(3.6)

⇒ IV1a(s) =
( R2a + RLa + L2a s

R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

)
V1a

+
(
− RLa

R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

)
V2a

(3.7)

In order to more easily recognize the coefficients of each input variable V1a,
V1b, V1c and V2a, V2b, V2c, we make use of the coeffs command, obtaining
better equations distributed in (3.7), (3.9), (3.11) and (3.13), (3.15), (3.17).

IV1b(s) = R2b V1b + RLb V1b− RLb V2b + L2b V1b s
R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

(3.8)

⇒ IV1b(s) =
( R2b + RLb + L2b s

R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

)
V1b

+
(
− RLb

R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

)
V2b

(3.9)

IV1c(s) = R2c V1c + RLc V1c− RLc V2c + L2c V1c s
R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

(3.10)
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⇒ IV1c(s) =
( R2c + RLc + L2c s

R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

)
V1c

+
(
− RLc

R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

)
V2c

(3.11)

IV2a(s) = R1a V2a − RLa V1a + RLa V2a + L1a V2a s
R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

(3.12)

⇒ IV2a(s) =
(
− RLa

R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

)
V1a

+
( R1a + RLa + L1a s

R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

)
V2a

(3.13)

IV2b(s) = R1b V2b− RLb V1b + RLb V2b + L1b V2b s
R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

(3.14)

⇒ IV2b(s) =
(
− RLb

R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

)
V1b

+
( R1b + RLb + L1b s

R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

)
V2b

(3.15)

IV2c(s) = R1c V2c− RLc V1c + RLc V2c + L1c V2c s
R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

(3.16)

⇒ IV2c(s) =
(
− RLc

R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

)
V1c

+
( R1c + RLc + L1c s

R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

)
V2c

(3.17)

In this work we have a system with six inputs and six outputs, in which
each output depends on the inputs, therefore, we will have a 6 × 6 matrix
with thirty six transfer functions corresponding to (3.18).

G(s) =



G1,1(s) G1,2(s) G1,3(s) G1,4(s) G1,5(s) G1,6(s)
G2,1(s) G2,2(s) G2,3(s) G2,4(s) G2,5(s) G2,6(s)
G3,1(s) G3,2(s) G3,3(s) G3,4(s) G3,5(s) G3,6(s)
G4,1(s) G4,2(s) G4,3(s) G4,4(s) G4,5(s) G4,6(s)
G5,1(s) G5,2(s) G5,3(s) G5,4(s) G5,5(s) G5,6(s)
G6,1(s) G6,2(s) G6,3(s) G6,4(s) G6,5(s) G6,6(s)


(3.18)
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where:

G1,1(s) =IV1a(s)
V1a(s)

=
( R2a + RLa + L2a s

R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

)
G1,2(s) =IV1a(s)

V1b(s)
= 0

G1,3(s) =IV1a(s)
V1c(s)

= 0

G1,4(s) =IV1a(s)
V2a(s)

=
(
− RLa

R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

)
G1,5(s) =IV1a(s)

V2b(s)
= 0

G1,6(s) =IV1a(s)
V2c(s)

= 0

(3.19)
G2,1(s) =IV1b(s)

V1a(s)
= 0

G2,2(s) =IV1b(s)
V1b(s)

=
( R2b + RLb + L2b s

R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

)
G2,3(s) =IV1b(s)

V1c(s)
= 0

G2,4(s) =IV1b(s)
V2a(s)

= 0

G2,5(s) =IV1b(s)
V2b(s)

=
(
− RLb

R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

)
G2,6(s) =IV1b(s)

V2c(s)
= 0

(3.20)
G3,1(s) =IV1c(s)

V1a(s)
= 0

G3,2(s) =IV1c(s)
V1b(s)

= 0

G3,3(s) =IV1c(s)
V1c(s)

=
( R2c + RLc + L2c s

R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

)
G3,4(s) =IV1c(s)

V2a(s)
= 0

G3,5(s) =IV1c(s)
V2b(s)

= 0

G3,6(s) =IV1c(s)
V2c(s)

=
(
− RLc

R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

)
(3.21)
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G4,1(s) =IV2a(s)
V1a(s)

=
(
− RLa

R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

)
G4,2(s) =IV2a(s)

V1b(s)
= 0

G4,3(s) =IV2a(s)
V1c(s)

= 0

G4,4(s) =IV2a(s)
V2a(s)

=
( R1a + RLa + L1a s

R1a R2a + R1a RLa + R2a RLa + L1a R2a s+ L2a R1a s+ L1a RLa s+ L2a RLa s+ L1a L2a s2

)
G4,5(s) =IV2a(s)

V2b(s)
= 0

G4,6(s) =IV2a(s)
V2c(s)

= 0

(3.22)
G5,1(s) =IV2b(s)

V1a(s)
= 0

G5,2(s) =IV2b(s)
V1b(s)

=
(
− RLb

R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

)
G5,3(s) =IV2b(s)

V1c(s)
= 0

G5,4(s) =IV2b(s)
V2a(s)

= 0

G5,5(s) =IV2b(s)
V2b(s)

=
( R1b + RLb + L1b s

R1b R2b + R1b RLb + R2b RLb + L1b R2b s+ L2b R1b s+ L1b RLb s+ L2b RLb s+ L1b L2b s2

)
G5,6(s) =IV2b(s)

V2c(s)
= 0

(3.23)
G6,1(s) =IV2c(s)

V1a(s)
= 0

G6,2(s) =IV2c(s)
V1b(s)

= 0

G6,3(s) =IV2c(s)
V1c(s)

=
(
− RLc

R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

)
G6,4(s) =IV2c(s)

V2a(s)
= 0

G6,5(s) =IV2c(s)
V2b(s)

= 0

G6,6(s) =IV2c(s)
V2c(s)

=
( R1c + RLc + L1c s

R1c R2c + R1c RLc + R2c RLc + L1c R2c s+ L2c R1c s+ L1c RLc s+ L2c RLc s+ L1c L2c s2

)
(3.24)

Parameter Symbol Value Unit
Inversor 1 (a, b, c) V1a, V1b, V1c 155 Vp
Inversor 2(a, b, c) V2a, V2b, V2c 155 Vp
Resistor 1(a, b, c) R1a, R1b, R1c 0.5 Ω
Resistor 2(a, b, c) R2a, R2b, R2c 10 Ω

Resistor Load (a, b, c) RLa, RLb, RLc 2 Ω
Inductor 1(a, b, c) L1a, L1b, L1c 20 mH
Inductor 2(a, b, c) L2a, L2b, L2c 10 mH

Table 10: MG three-phase model parameters
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To obtain the results with numerical values, we use the subs command
in MATLAB considering the MG parameters shown in table 10, achieving
a 6× 6 matrix of thirty six transfer functions (3.25).

⇒ G(s) =



s
100 +12

s2
5000 + 53 s

200 +26
0 0 − 2

s2
5000 + 53 s

200 +26
0 0

0
s

100 +12
s2

5000 + 53 s
200 +26

0 0 − 2
s2

5000 + 53 s
200 +26

0

0 0
s

100 +12
s2

5000 + 53 s
200 +26

0 0 − 2
s2

5000 + 53 s
200 +26

− 2
s2

5000 + 53 s
200 +26

0 0
s

50 + 5
2

s2
5000 + 53 s

200 +26
0 0

0 − 2
s2

5000 + 53 s
200 +26

0 0
s

50 + 5
2

s2
5000 + 53 s

200 +26
0

0 0 − 2
s2

5000 + 53 s
200 +26

0 0
s

50 + 5
2

s2
5000 + 53 s

200 +26


(3.25)

To obtain matrices A, B, C and D in (3.27), from the transfer matrix
G(s) of the whole system that groups the six outputs based on the six
inputs (3.25), we use the script, shown in (Algorithm 2), to convert it in an
object type tf (transfer function Gtf ), and this in turn, transform into an
object type ss (state space Gss) with the command of the same name (3.26),
where we can practically obtain the required matrices to continue with the
analysis of this work in a state space model.

Gss = ss (Gtf) (3.26)
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A =Gss.A =



−1325 −507.8 0 0 0 0 0 0 0 0 0 0
256 0 0 0 0 0 0 0 0 0 0 0
0 0 −1325 −507.8 0 0 0 0 0 0 0 0
0 0 256 0 0 0 0 0 0 0 0 0
0 0 0 0 −1325 −507.8 0 0 0 0 0 0
0 0 0 0 256 0 0 0 0 0 0 0
0 0 0 0 0 0 −1325 −507.8 0 0 0 0
0 0 0 0 0 0 256 0 0 0 0 0
0 0 0 0 0 0 0 0 −1325 −507.8 0 0
0 0 0 0 0 0 0 0 256 0 0 0
0 0 0 0 0 0 0 0 0 0 −1325 −507.8
0 0 0 0 0 0 0 0 0 0 256 0



B =Gss.B =



16 0 0 0 0 0
0 0 0 0 0 0
0 16 0 0 0 0
0 0 0 0 0 0
0 0 16 0 0 0
0 0 0 0 0 0
0 0 0 8 0 0
0 0 0 0 0 0
0 0 0 0 8 0
0 0 0 0 0 0
0 0 0 0 0 8
0 0 0 0 0 0



C =Gss.C =



3.125 14.65 0 0 0 0 0 −4.88 0 0 0 0
0 0 3.125 14.65 0 0 0 0 0 −4.88 0 0
0 0 0 0 3.125 14.65 0 0 0 0 0 −4.88
0 −2.441 0 0 0 0 12.5 6.10 0 0 0 0
0 0 0 −2.441 0 0 0 0 12.5 6.10 0 0
0 0 0 0 0 −2.441 0 0 0 0 12.5 6.10



D =Gss.D =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(3.27)

3.4 Simulation of MG of two three-phase inverters with a
resistive load

The simulation of the MG three-phase electrical model has been performed
with a Matlab script using Euler (2.75) for the states equation (2.50) and
the outputs equation (2.51), where the matrices A, B, C and D in (3.27)
obtained in the previous section are used.

A simulation time tf = 0.1 seconds has been configured, with steps
ts = 1e− 6, a frequency ω = 2πf = 2π(60). In this work, we assume a
phase of the first three phase voltage source ϕ1 = 0 and a range of values
for the phase of the second three phase voltage source ϕ2 = 0 : 0.05 : 0.5 in
order to compare the behavior of the system when the six sources gradually
phase out of each other and observe the voltage, current and power signals
graphically.

In (3.28), we use inputs one (3.29), (3.30), (3.31) and inputs two (3.32), (3.33), (3.34)
of voltage as an Euler’s exponential function:
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u =



u1a
u1b
u1c
u2a
u2b
u2c


(3.28)

where:

u1a(t) =u0 e jω t+j(θ1a+ϕ1), u0 = 155, θ1a = 0 (3.29)

u1b(t) =u0 e jω t+j(θ1b+ϕ1), u0 = 155, θ1b = θ1a + 2
π

3
(3.30)

u1c(t) =u0 e jω t+j(θ1c+ϕ1), u0 = 155, θ1c = θ1b + 2
π

3
(3.31)

u2a(t) =u0 e jω t+j(θ2a+ϕ2), u0 = 155, θ2a = 0 (3.32)

u2b(t) =u0 e jω t+j(θ2b+ϕ2), u0 = 155, θ2b = θ2a + 2
π

3
(3.33)

u2c(t) =u0 e jω t+j(θ2c+ϕ2), u0 = 155, θ2c = θ2b + 2
π

3
(3.34)

To perform this simulation, we use Euler in the states equation (2.50) as
shown in (3.35):

x(i + 1) =x(i) + ts _x

⇒ x(i + 1) =x(i) + ts (A x(i) + B u) , i = 0 : length
(

tf

ts

) (3.35)

And the output equation (2.51), in this example, is given by (3.36);

I = C x (3.36)

Because the values that are achieved for the voltage and current are
stored in a vector format according to the number of inputs and outputs of
the system, then the three-phase power of each input can be considered as
the sum of the powers of its components a, b, c obtained from the product
of these two variables.

Using Matlab script (Section 7.1.2), we obtain the graph corresponding
to current, voltage and power of each source. We have carried out the test
using two three-phase input sources with equal voltages magnitude, but out
of phase.

Figure 25 shows the system dynamics with respect to the three-phase one
voltage signal (subfigure 25a), the three-phase one current signal (subfigure
25b) and the three-phase two voltage signal (subfigure 25c), the three-phase
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two current signal (subfigure 25d) when the simulation starts with the phases
ϕ1 = ϕ2 = 0.
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Figure 25: System dynamics when two three-phase input sources with equal
voltage magnitude and equal phases operate during the simulation time.

The current signal in the subfigure 25b and the subfigure 25d shows a
transitory variation for a short period of time at the start of the simulation,
until its magnitudes and phases, characteristic of a three-phase signal, are
stabilized while the two sources maintain ϕ1 = ϕ2 = 0.

The active powers of the two three-phase input sources are shown in
figure 26, where source one delivers a lower three-phase active power P1(3φ)
than source two, but it produces a significant transient peak until the signal
becomes stable, while source two does not suffer a notable variation P2(3φ)
as above until stability is achieved.
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Figure 26: Active Power P(3φ) of MNA-based MG model

The effect observed in figure 26 of these three-phase power signals is due
to the transient variations, in magnitude and phase, of the three-phase cur-
rents observed in the subfigure 25b and the subfigure 25d during the start
of the simulation.

Figure 27 shows the system dynamics with respect to the three-phase one
voltage signal (subfigure 27a), the three-phase one current signal (subfigure
27b) and the three-phase two voltage signal (subfigure 27c), the three-phase
two current signal (subfigure 27d) when the simulation ends with the phases
ϕ1 = 0 and ϕ2 = 0.5. The phase difference between ϕ1 and ϕ2 of the source
voltage signal is programmed in Matlab in a range of 0 to 0.5 with phase
increment steps of 0.05 in ϕ2 to illustrate the behavior of these signals.
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Figure 27: System dynamics when two three-phase input sources with equal
voltage magnitude and different phases operate during the simulation time.

The current signals in the subfigure 27b and the subfigure 27d don’t
show a transitory variation in their magnitudes and phases, and remain sta-
ble while they are out of phase ϕ1 = 0 and ϕ2 = 0.5 during the simulation
time.

The active powers of the two three-phase input sources are shown in
figure 28, where the three-phase active power P1(3φ) of source one is signifi-
cantly lower than the three-phase active power P2(3φ) of source two, without
a noticeable transient peak occurring in both cases until the signal becomes
stable.
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Figure 28: Active Power P(3φ) of MNA-based MG model

4 Complex-based modeling and analysis of MG of
two three-phase inverters with a resistive load

In the previous sections we have learned about the process involved in MG
modeling using tools such as MNA through the nodes of the electrical circuit,
obtaining a simplified expression of the currents as a function of the voltages,
which can be applied computational algorithms that allow to automate the
resolution process. As the objective is to obtain the powers delivered by each
inverter in the microgrid, it can be done through the following expression

P (s) = L{i(t)T v(t)} = I(s)T ∗ V (s) =
∫ c+jω

c−jω
I(s)TV (s− jω) dω (4.1)

We can already imagine that the convolution integral of product between
current and voltage is possible (4.1) but a greater effort is needed to con-
tinue with the analysis to obtain the powers, for this reason, it is that from
the structure provided by the MNA with SCAM support allows us to find
the transfer functions that relate the current and voltage of each inverter
and move to the state space, in order to obtain the powers as a product of
current and voltage as a function of time in the same algorithmic way to
facilitate testing and simulations in Matlab.

All these procedures work properly and allow us to find the powers,
but while the microgrid increases in number of inverters, the difficulty to
analyze and solve this type of systems increases notably, in addition to the
loss of intuition in the interaction of each component of the microgrid, as
can be seen in the mathematical expressions (3.3) applying MNA, (3.18)
and (3.25) with transfer functions matrix of 6 × 6 where we only have a
microgrid with two three-phase inverters. It is precisely due to the need
to find a more compact, simplified, scalable and intuitive alternative that
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the following complexes-based model is proposed directly from the power
equations of each inverter, using the scheme in the figure 29.

4.1 Electrical scheme of three-phase MG

Figure 29 shows the MG scheme being considered in this work, the same
one that has been analyzed in figure 12 of section 2.2 using MNA by SCAM,
but in three-phase mode.

G1

e1 R1 L1 e3 L2 R2 e2

G2
RL

Figure 29: Microgrid scheme

This MG scheme is of the resistive-inductive type (R1, L1) and (R2, L2)
and consists of two three-phase inverters G1 and G2 that supply a load pure
resistive RL.

4.2 Complex-based modeling of three-phase MG

Each generator injected complex power is given by

Si(t) = 3
2 ei(t) īi(t), i = 1, 2 (4.2)

where ei, īi ∈ C are the complex voltage and the complex conjugate current
in αβ-frame, respectively, given by

ei(t) =Ei(t)ejω0t+jϕi(t) (4.3)
īi(t) =Ii(t)ejω0t+jϕ′i(t) (4.4)

and the constant factor 3
2 is determinated in active and reactive power ex-

pression in the αβ-frame given by

Pi(t) =3
2 (eiα(t)iiα(t) + eiβ(t)iiβ(t)) (4.5)

Qi(t) =3
2 (−eiα(t)iiβ(t) + eiβ(t)iiα(t)) (4.6)

The complex power can be also written in complex form as

Si = Pi + jQi ∈ C (4.7)
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where Pi and Qi are each generator injected active and reactive power, re-
spectively, and j is the imaginary unit.

In order to study the dynamics of the power, we can differentiate (4.2)
to obtain

Ṡi(t) = 3
2
(
ėi(t) īi(t) + ei(t) ˙̄ii(t)

)
(4.8)

In order to compute (4.8) we need the derivative of the voltage, ėi(t), and
the derivative of the transpose of the current ˙̄ii(t). The first one is obtained
by differentiating (4.3) as follows

ėi(t) = Ėi(t)ejω0t+jϕi(t) + Ei(t)j(ω0 + ϕ̇i(t))ejω0t+jϕi(t)

=
(
Ėi(t) + Ei(t)j(ω0 + ϕ̇i(t))

)
ejω0t+jϕi(t)

=
(
Ėi(t)
Ei(t)

+ j(ω0 + ϕ̇i(t))
)
ei(t)

(4.9)

The second one, ˙̄ii(t), is obtained analyzing the considered circuit (remember
Figure 29, placing the focus on inverter G1). Having that

L1i̇1(t) = e1(t)− e3(t)−R1i1(t) and e3(t) = RL(i1(t) + i2(t))

we obtain that

i̇1(t) = 1
L1
e1(t)− (RL +R1)

L1
i1(t)− RL

L1
i2(t) (4.10)

The transpose of (4.10) is

˙̄i1(t) = 1
L1
ē1(t)− (RL +R1)

L1
ī1(t)− RL

L1
ī2(t) (4.11)
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By substituing (4.9) and (4.11) into (4.8) for the case of G1 we obtain

Ṡ1(t) = 3
2
(
ė1(t) ī1(t) + e1(t) ˙̄i1(t)

)
= 3

2

(((
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))

)
e1(t)

)
ī1(t) + e1(t) ˙̄i1(t)

)

=
(
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))

)
S1(t) + 3

2 e1(t) ˙̄i1(t)

=
(
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))

)
S1(t) + 3

2 e1(t)
( 1
L1
ē1(t)− (RL +R1)

L1
ī1(t)− RL

L1
ī2(t)

)

=
(
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))− (RL +R1)

L1

)
S1(t) + 3

2 e1(t)
( 1
L1
ē1(t)− RL

L1
ī2(t)

)

=
(
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))− (RL +R1)

L1

)
S1(t) + 3

2
1
L1
E2

1(t)− 3
2
RL
L1

e1(t)̄i2(t)

=
(
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))− (RL +R1)

L1

)
S1(t) + 3

2
1
L1
E2

1(t)− 3
2
RL
L1

e1(t)̄i2(t)e2(t)
e2(t)

=
(
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))− (RL +R1)

L1

)
S1(t) + 3

2
E2

1(t)
L1

− RL
L1

S2(t)e1(t)
e2(t)

(4.12)
Hence, for both inverters, the MG model is

Ṡ1(t) =
(
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))− (RL +R1)

L1

)
S1(t) + 3

2
E2

1(t)
L1

− RL
L1

S2(t)e1(t)
e2(t)

Ṡ2(t) =
(
Ė2(t)
E2(t) + j(ω0 + ϕ̇2(t))− (RL +R2)

L2

)
S2(t) + 3

2
E2

2(t)
L2

− RL
L2

S1(t)e2(t)
e1(t)

(4.13)
By defining

α = e1(t)
e2(t) = E1

E2e
j(ϕ1(t)−ϕ2(t))

the previous model (4.13) becomes

Ṡ1(t) =
(
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))− (RL +R1)

L1

)
S1(t) + 3

2
E2

1(t)
L1

− RL
L1

S2(t)α

Ṡ2(t) =
(
Ė2(t)
E2(t) + j(ω0 + ϕ̇2(t))− (RL +R2)

L2

)
S2(t) + 3

2
E2

2(t)
L2

− RL
L2

S1(t)α−1

(4.14)
which can be rewritten in state-space form as
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(
Ṡ1(t)
Ṡ2(t)

)
=

 Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))− (RL+R1)

L1
−RL
L1
α

−RL
L2
α−1 Ė2(t)

E2(t) + j(ω0 + ϕ̇2(t))− (RL+R2)
L2

( S1(t)
S2(t)

)

+
( 3

2
1
L1

0
0 3

2
1
L2

)(
E2

1(t)
E2

2(t)

)
(4.15)

4.3 Complex-based simulation of three-phase MG

The simulation of the complex-based MG model composed of two three-
phase inverters with a resistive load has been carried out with a Matlab script
in discrete algorithmically using the model equations system in (4.14) and
the expression of voltage in (4.3). To obtain the complex-based MG power
model solution, we have considered the parameters shown in the table 11.

Parameter Symbol Value Unit
Inversor 1 G1 155 Vp
Inversor 2 G2 155 Vp
Resistor 1 R1 0.5 Ω
Resistor 2 R2 10 Ω

Resistor Load RL 2 Ω
Inductor 1 L1 20 mH
Inductor 2 L2 10 mH

Table 11: Complex-based MG three-phase model parameters

A simulation time tf = 0.1 seconds has been configured, with steps
ts = 1e− 6, a frequency ω = 2πf = 2π(60). The visualization of the ac-
tive and reactive power signals of the complex-based model is obtained from
the expression given in (4.7) with the functions real e imag applied to the
solution of the apparent power expressed in complexes.

Using the Matlab script (Section 7.1.3) in open loop we obtain the graphs
referring to active power, reactive power and frequency of the two inverters
of the MG as shown in the figure 30.
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Figure 30: Complex-based MG model system dynamics when two three-
phase inverters with equal voltage magnitude and equal phases operate dur-
ing the simulation time.

When inverter 2 delivers an active power flow (P2) greater than inverter 1
(P1) in the MG (subfigure 30a), the reactive power flow of inverter 2 (Q2)
is less than that supplied by inverter 1 (Q1) (subfigure 30b). The frequency
remains constant due to open-loop analysis (subfigure 30c).

If we focus on the active power signal supplied by the inverters to the
resistive load, as shown in the figure 31, we can verify that this signal corre-
sponds to the active power signal obtained with the MNA-based MG model
shown in figure 26, considering that we use the same parameters to simulate
the two models.
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Figure 31: Active Power P(3φ) of complex-based MG model

4.4 Valoration

The expression in (4.14) or in the state space form (4.15) of the complex-
based MG model gives us the opportunity to observe the interaction of the
components within the system, i.e., how the apparent power of each inverter
is related to the voltages and phases of each of them.
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The MG modeling procedure using complex-based manual analysis is
reduced, unlike the modeling procedure reviewed in the previous sections
using MNA-based manual analysis.

It is also important to mention the reduction in the number of algorith-
mic procedures and Matlab functions when we use complex-based modeling,
where we relatively observe a reduction of programming code for analysis
and simulation that can be reviewed in the appendix of this document.

5 Stability analysis and control of MG composed
by two three-phase inverters feeding a resistive
load in islanded mode

In this last section we are going to perform the stability analysis of the
complex-based model using Matlab to obtain the equilibrium points consid-
ering the parameters of the table 11. In addition, the droop control strategy
will be implemented in the complex-based model and in the MNA-based
model, to observe the power delivered by the MG inverters in closed-loop
and value the respective simulations between the two models.

5.1 Equilibrium points of complex-based MG three-phase
model

The equilibrium points or trajectories of a nonlinear system are obtained
by solving the equation ẋ = dx

dt = 0 where x is the state variable given the
expression [15]

ẋ(t) =f(x(t), u(t)), x(t0) = x0 (5.1)
y(t) =h(x(t)) (5.2)

As cited above, we proceed to calculate the equilibrium points of the system
of equations of the complex-based model using Matlab, given the equations
in (4.14) as follows

Ṡ1(t) =0
Ṡ2(t) =0

(5.3)

so, we have

Ṡ1(t) =
(
Ė1(t)
E1(t) + j(ω0 + ϕ̇1(t))− (RL +R1)

L1

)
S1(t) + 3

2
E2

1(t)
L1

− RL
L1

S2(t)α = 0

Ṡ2(t) =
(
Ė2(t)
E2(t) + j(ω0 + ϕ̇2(t))− (RL +R2)

L2

)
S2(t) + 3

2
E2

2(t)
L2

− RL
L2

S1(t)α−1 = 0

(5.4)
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Considering as null the rates of variation of voltage and phase with respect
to time we have

Ṡ1(t) =
(
j(ω0)− (RL +R1)

L1

)
S1(t) + 3

2
E2

1(t)
L1

− RL
L1

S2(t)α = 0

Ṡ2(t) =
(
j(ω0)− (RL +R2)

L2

)
S2(t) + 3

2
E2

2(t)
L2

− RL
L2

S1(t)α−1 = 0
(5.5)

where
α = e1(t)

e2(t) = E1
E2e

j(ϕ1(t)−ϕ2(t)) (5.6)

Now we perform the calculations symbolically using the Matlab’s script in
the appendix section 7.1.4 obtaining the following equilibrium points

S1e =
E1

(
E1R2 + E1 RL− E1 L2w 1i− E2 RL eAP 1i

)
3i

2 (R1R2 1i +R1 RL 1i +R2 RL 1i + L1R2w + L2R1w + L1 RLw + L2 RLw − L1 L2w2 1i)

S2e =
E2

(
E2R1 1i + E2 RL 1i + E2 L1w − E1 RL e−AP 1i 1i

)
3i

2 (L1 L2w2 −R1 RL−R2 RL−R1R2 + L1R2w 1i + L2R1w 1i + L1 RLw 1i + L2 RLw 1i)
(5.7)

considering the phase variation AP = ϕ1(t)− ϕ2(t) in (5.7). At this point,
it is interesting to ask ourselves if we can equalize the powers of the two MG
inverters by manipulating only the voltages, evaluating the MG parameters
from table 11 in (5.7). The results obtained in Matlab as follow

E1 = 0
E2 = 0

(5.8)

where E1 and E2 are the output voltages of each inverter respectively. These
voltages in (5.8) indicate that have to be zero, so that the powers of the two
inverters are equal, therefore, there is no solution modifying only voltages.

When we equalize the powers of the two inverters of the MG, manipu-
lating only the phases, we have a different case where we do not have an
explicit solution because the phase relation depends implicitly on the volt-
ages relation as shown in the expression (5.6) and (5.7), and the solutions
in function of the real and imaginary part go according to the parameters of
the MG, in this case, using the parameters in table 11, we have the following
equilibrium points (Se) simbolically

Se =



− ln


(
E22 L1 w−E12 L2 w−E12 R2 1i+E22 R1 1i−E12 RL 1i+E22 RL 1i+

√
(E12 R2−E22 R1+E12 RL−E22 RL−E12 L2 w 1i+E22 L1 w 1i)2+4E12 E22 RL2 1i

)
1i

2E1 E2 RL

 1i

− ln

−
(
E12 L2 w−E22 L1 w+E12 R2 1i−E22 R1 1i+E12 RL 1i−E22 RL 1i+

√
(E12 R2−E22 R1+E12 RL−E22 RL−E12 L2 w 1i+E22 L1 w 1i)2+4E12 E22 RL2 1i

)
1i

2E1 E2 RL

 1i


(5.9)
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Executing the detailed script in appendix section 7.1.4 in Matlab, we have
the complex power value as below

S1e = S2e = 1298.513 + j4489.058
S1e = S2e = 2651.940 + j837.341

with the values obtained in (5.9) respectively. Therefore, it is necessary
to manipulate voltages and phases together to equalize the powers of the
inverters of the complex-based MG model.

5.2 Droop control strategy of MNA-based and complex-based
MG three-phase model

We are going to implement as a primary control loop the power sharing
control in each inverter based on the droop control strategy, also called de-
centralized control. This type of control does not require communications
service between MG inverters.

The droop control principle consists in coordinating the interaction of the
frequency-active power droop characteristic and the voltage-reactive power
droop characteristic, in such a way that it controls the flow of active and
reactive power by controlling the frequency and amplitude of the output
voltage in order to share the adjustment of the total power demand [16].

The general droop equations for the frequency and amplitude of the
output voltage of an inverter are represented in the figure 32 and can be
expressed as below

f = f0 −m∆P (5.10)
V = V0 − n∆Q (5.11)

where f0 and V0 are the reference values of the frequency and amplitude of
the inverter output voltage respectively, ∆P is the change in active power
and ∆Q is the variation of reactive power. Coefficients m y n are static-
droop gains that can be adjusted as follows [16]

m = f0 − fmin
Pmax

(5.12)

n = V0 − Vmin
Qmax

(5.13)

where Pmax, Qmax is the maximum active and reactive output power re-
spectively, and fmin, V min is the minimum output voltage and frequency
respectively.
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The droop control to share power in a MG composed by two inverters
in parallel is represented in figure 32

(a) f − P Droop caracteristics (b) V −Q Droop caracteristics

Figure 32: Relationship between frecuency control (f −P ) and voltage con-
trol (V −Q) of Droop controller.

The simulation in closed-loop of the complex-based MG model composed
by two three-phase inverters feeding a resistive load has been carried out al-
gorithmically using a Matlab script in discrete similar to used in open-loop
in section 4.3, but adding the droop equations as control loop.

A simulation time tf = 0.5 seconds has been configured, with steps
ts = 1e− 6, a frequency ω = 2πf = 2π(60). The visualization of the ac-
tive and reactive power signals of the complex-based model is obtained from
the expression given in (4.7) with the functions real e imag applied to the
solution of the apparent power expressed in complexes.

Using the Matlab script (Appendix Section 7.1.5) in closed-loop we ob-
tain the graphs referring to active power, reactive power and frequency of
the two inverters of complex-based MG model as shown in the figure 33.
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Figure 33: Complex-based MG model system dynamics with Droop Control
when two three-phase inverters with equal voltage magnitude and equal
phases operate during the simulation time.

In the same way, the simulation in closed-loop of the MNA-based MG
model composed by two three-phase inverters feeding a resistive load has
been carried out algorithmically using a Matlab script in discrete similar to
used in open-loop in section 3.4, but adding the droop equations as control
loop.

So that the simulation results obtained with the two MG modeling meth-
ods can be properly compared, the same parameters have been adjusted
as the simulation time tf = 0.5 seconds, steps ts = 1e− 6 and frequency
ω = 2πf = 2π(60). The visualization of the active and reactive power sig-
nals of the MNA-based model is obtained from the product of the current
and the voltage using functions real e imag applied to voltage expressed in
complexes.

Using the Matlab script (Appendix Section 7.1.6) in closed-loop we ob-
tain the graphs referring to active power, reactive power and frequency of
the two inverters of MNA-based MG model as shown in the figure 34.
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Figure 34: MNA-based MG model system dynamics with Droop Control
when two three-phase inverters with equal voltage magnitude and equal
phases operate during the simulation time.

Relating the simulations of the MNA-based model and the complex-
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based model we can discuss that the subfigure 33a and subfigure 34a shows
us the process of sharing the active power demand of the MG between in-
verter 1 (P1) and inverter 2 (P2) during the simulation time established in
Matlab.

During the first t = 0.1 seconds we observe oscillations of the active
power of the two inverters until reaching the total power balance required
by the MG load. These transient oscillations can be attenuated by fine-
tuning the primary controller parameters and implementing more levels of
control in the models.

It has not been considered to pay greater attention to the reactive powers
of the inverters represented in the subfigure 33b and subfigure 34b, because
the droop primary control has been enough to understand the principle of
its control within the MNA-based MG model and complex-based MG model
feeding a resistive load proposed in the present work.

Besides, the subfigure 33c and subfigure 34c illustrates the frequency
reduction in the inverters when they reach the supply balance of active
power demanded by the load. To avoid having this unwanted effect on
frequency, it is necessary to increase the control levels in the MG model.

6 Conclusions
Through the analysis of a basic electrical circuit, we have understood the
principle of the MNA method to analyze more complex electrical circuits,
providing more information than the mesh voltages method or the node
currents method. In this case, it has allowed us to model an MG composed
by two single-phase inverters and another MG composed of two three-phase
inverters that feed a resistive load.

The MNA-based MG model is easily automatable using Matlab compu-
tational algorithms, which reduces the time spent on manual mathematical
analysis. The MNA-based SCAM tool is developed as a Matlab script and
has made it easier for us to model the MGs mentioned above in a fast, simple
and scalable way to larger MGs. The results obtained by SCAM have been
compared to the analytical results obtained manually, obtaining the same
results in less time.

To simulate the dynamic response of the MG models analyzed in this
work, it was necessary to transform the result generated by the SCAM tool
given in the Transfer Function to State Space. This managed to algorith-
mically improve the analysis and simulation process in Matlab, allowing to
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obtain the value of the power of the MG inverters by making the product
of the current and the output voltage of each one of them. We avoid the
analysis in the Transfer Function model because it leads to other additional
mathematical operations that include the integral of the convolution of the
product of the current and the voltage to obtain power, which was not part
of the objectives.

When MGs increase in number of inverters, the analysis using methods
such as MNA becomes very extensive and makes it difficult to understand
the behavior of the system. The complex-based MG model is a very good
alternative to the MNA-based MG models, due to its reduced mathematical
load, facility of intuition and observation of the interaction of MG compo-
nents compared to the other models reviewed.

The algorithmic structure of the complex-based MG model implemented
in Matlab is smaller compared to the structure of the MNA-based model,
which provides greater fluidity in simulation tests. The validity and reliabil-
ity of the complex-based model is checked with the results of the simulations
carried out, where the power signal has a similar behavior in both cases.

Finally, the droop control strategy was implemented to give greater
strength to the complex-based MG model approach. In this case, the result
of the stability analysis indicates that it is necessary to jointly manipulate
magnitude and phase to equalize the powers generated by the inverters and
achieve the shared power balance that the load demands in the MG. In view
of the results obtained with the simulations, the dynamic response of the
proposed models has similar behaviors, giving validity and confidence to the
complex-based MG model, and allowing future works in this line.
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7 Appendix

7.1 Matlab Scripts

7.1.1 MNA-based MG single-phase model Matlab script

clc;
clear all;
fname =" ModeloMicrorredElectrico_1FASE.cir";
scam;

R1 = 3;
R2 = 3;
L1 = 0.01;
L2 = 0.01;
RL = 1000;

G1 = -I_V1
G2 = -I_V2

G1 = collect(G1 ,[V1 V2])
G2 = collect(G2 ,[V1 V2])

G11 = coeffs(G1 ,V1)
G11 = G11(1,2)

G12 = coeffs(G1 ,V2)
G12 = G12(1,2)

G21 = coeffs(G2 ,V1)
G21 = G21(1,2)

G22 = coeffs(G2 ,V2)
G22 = G22(1,2)

pretty ([G11 G12;G21 G22])

G=subs([G11 G12;G21 G22])

pretty(G)

% Make Generic Transfer Function Simple
s = tf(’s’);
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[rows ,columns ]=size(G);% rows and columns of
matrix G ( Various Func. Transf )

Gtf = tf(zeros(size(G)));
for fil=1: rows

for col =1: columns
Gtf(fil ,col)=eval(char(G(fil ,col)));
end

end

% First way to obtain State Spaces matrices (ss)
Gss = ss(Gtf)
A = Gss.A;
B = Gss.B;
C = Gss.C;
D = Gss.D;

%% Simulation using Euler - FOR Loop (Fast with
preallocating zeros)

tic
close all;
tf = 0.1; % simulation end time
ts = 1e-6; % simulation steps: ts = 1 / 4. * p

where p: poles -> eig (A)
t = 0:ts:tf; % time range vector
x = [0 ; 0 ; 0 ; 0]; %State Initial Values Vector
Estados = zeros(length(x),length(t) -1); % Vector of

zeros assigned to states
U = zeros(2,length(t) -1); %Zeros vector assigned

to Inputs
Salidas = zeros(2,length(t) -1); %Zeros vector

assigned to Outputs
w=2*pi*60; % value as a function of frequency
ph1 =0:0.0001:0.001; ph2 =0:0.0001:0.001; % phase

range
P1rms = zeros(1,length(ph2)); % Vector of zeros

assigned to Power 1 rms
P2rms = zeros(1,length(ph2));% Vector of zeros

assigned to Power 2 rms

for sim = 1: length(ph2) % number iterations
according to the phase

for k = 1: length(t)-1 % number iterations
according to time
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u1 = 155* sin(w*k*ts+ph1(1));% Input 1 voltage
value

u2 = 155* sin(w*k*ts+ph2(sim));% Input 2 voltage
value

u = [u1 ; u2];% inputs vector

%STATE EQUATION
x = x + ts*(A*x + B*u); % Euler: x(k+1) = x(k) +

ts*(dx/dt)
% where: dx/dt = A*x + B*u

% OUTPUT EQUATION
I = C*x;

Estados(:,k) = x; % Values of state variables
U(:,k) = u; % Input values ( voltage )
Salidas(:,k) = I; % Values of output variables (

Current )

end

P = Salidas .*U; % Potencia Activa ( Potencia =
Corriente .* Tension )

P1rms(:,sim) = rms(P(1,:)); %RMS Power 1
P2rms(:,sim) = rms(P(2,:)); %RMS Power 2

if (sim == 1) || (sim == length(ph2))

figure ();
plot ((0: length(t) -2)*ts,Salidas (1,:),’b’ ,(0:

length(t) -2)*ts,Salidas (2,:),’r--’,’
LineWidth ’ ,2);

%title(’Outputs ’);
xlabel(’Time␣(s)’); ylabel(’Current␣(A)’);
legend(’I_1’,’I_2’,’Orientation ’,’horizontal ’)

;
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
if sim == 1, saveas(gcf ,’

corrientes_primera_viguales ’,’epsc’); end
if sim == length(ph2), saveas(gcf ,’

corrientes_ultima_viguales ’,’epsc’); end
figure ();
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plot ((0: length(t) -2)*ts,U(1,:) ,(0: length(t) -2)
*ts,U(2,:),’--’,’LineWidth ’ ,2);

%title(’Inputs ’);
xlabel(’Time␣(s)’); ylabel(’Voltage␣(V)’);
legend(’V_1’,’V_2’,’Orientation ’,’horizontal ’)

;
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
if sim == 1, saveas(gcf ,’

voltajes_primera_viguales ’,’epsc’); end
if sim == length(ph2), saveas(gcf ,’

voltajes_ultima_viguales ’,’epsc’); end
figure ();
plot ((0: length(t) -2)*ts,P(1,:),’g’ ,(0: length(t

) -2)*ts,P(2,:),’b--’,’LineWidth ’ ,2);
%title(’Powers ’);
xlabel(’Time␣(s)’); ylabel(’Power␣(W)’);
legend(’P_1’,’P_2’,’Orientation ’,’horizontal ’)

;
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
if sim == 1, saveas(gcf ,’

potencias_primera_viguales ’,’epsc’); end
if sim == length(ph2), saveas(gcf ,’

potencias_ultima_viguales ’,’epsc’); end
end

end
figure ();
plot(ph2 ,single(P1rms),ph2 ,single(P2rms),’--’,’

LineWidth ’ ,2);
%title (’( RMS) Active Power ’);
xlabel(’\phi_ {2}( phase)’,’Fontsize ’ ,15); ylabel(’

Power_{RMS}␣(W)’,’Fontsize ’ ,15);
legend(’P_1␣_{RMS}’,’P_2␣_{RMS}’,’Orientation ’,’

horizontal ’,’FontSize ’ ,15);
grid(’on’);axis fill; set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’potencia_rms_viguales ’,’epsc’)
toc

7.1.2 MNA-based MG three-phase model Matlab script

clc;
clear all;
fname =" ModeloMicrorredElectrico_3FASE.cir";
scam;
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R1a = 0.5;
R1b = 0.5;
R1c = 0.5;
R2a = 10;
R2b = 10;
R2c = 10;
L1a = 2e-2;
L1b = 2e-2;
L1c = 2e-2;
L2a = 1e-2;
L2b = 1e-2;
L2c = 1e-2;
RLa = 2;
RLb = 2;
RLc = 2;

G1a = -I_V1a
G1b = -I_V1b
G1c = -I_V1c
G2a = -I_V2a
G2b = -I_V2b
G2c = -I_V2c

G1a = collect(G1a ,[V1a V2a])
G1b = collect(G1b ,[V1b V2b])
G1c = collect(G1c ,[V1c V2c])
G2a = collect(G2a ,[V1a V2a])
G2b = collect(G2b ,[V1b V2b])
G2c = collect(G2c ,[V1c V2c])
% %%%%%%%%%%%%%%%%%%%%%%%
G11 = coeffs(G1a ,V1a)
G11 = G11(1,2)

%G12 = coeffs (G1a ,V1b)
G12 = 0;

%G13 = coeffs (G1a ,V1c)
G13 = 0;

G14 = coeffs(G1a ,V2a)
G14 = G14(1,2)

%G15 = coeffs (G1a ,V2b)
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G15 = 0;

%G16 = coeffs (G1a ,V2c)
G16 = 0;
% %%%%%%%%%%%%%%%%%%%%%%%
%G21 = coeffs (G1b ,V1a)
G21 = 0;

G22 = coeffs(G1b ,V1b)
G22 = G22(1,2)

%G23 = coeffs (G1b ,V1c)
G23 = 0;

%G24 = coeffs (G1b ,V2a)
G24 = 0;

G25 = coeffs(G1b ,V2b)
G25 = G25(1,2)

%G26 = coeffs (G1b ,V2c)
G26 = 0;
% %%%%%%%%%%%%%%%%%%%%%%
%G31 = coeffs (G1c ,V1a)
G31 = 0;

%G32 = coeffs (G1c ,V1b)
G32 = 0;

G33 = coeffs(G1c ,V1c)
G33 = G33(1,2)

%G34 = coeffs (G1c ,V2a)
G34 = 0;

%G35 = coeffs (G1c ,V2b)
G35 = 0;

G36 = coeffs(G1c ,V2c)
G36 = G36(1,2)
% %%%%%%%%%%%%%%%%%%%%%%
G41 = coeffs(G2a ,V1a)
G41 = G41(1,2)
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%G42 = coeffs (G2a ,V1b)
G42 = 0;

%G43 = coeffs (G2a ,V1c)
G43 = 0;

G44 = coeffs(G2a ,V2a)
G44 = G44(1,2)

%G45 = coeffs (G2a ,V2b)
G45 = 0;

%G46 = coeffs (G2a ,V2c)
G46 = 0;
% %%%%%%%%%%%%%%%%%%%%%%
%G51 = coeffs (G2b ,V1a)
G51 = 0;

G52 = coeffs(G2b ,V1b)
G52 = G52(1,2)

%G53 = coeffs (G2b ,V1c)
G53 = 0;

%G54 = coeffs (G2b ,V2a)
G54 = 0;

G55 = coeffs(G2b ,V2b)
G55 = G55(1,2)

%G56 = coeffs (G2b ,V2c)
G56 = 0;
% %%%%%%%%%%%%%%%%%%%%%%
%G61 = coeffs (G2c ,V1a)
G61 = 0;

%G62 = coeffs (G2c ,V1b)
G62 = 0;

G63 = coeffs(G2c ,V1c)
G63 = G63(1,2)

%G64 = coeffs (G2c ,V2a)
G64 = 0;
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%G65 = coeffs (G2c ,V2b)
G65 = 0;

G66 = coeffs(G2c ,V2c)
G66 = G66(1,2)
% %%%%%%%%%%%%%%%%%%%%

pretty ([G11 G12 G13 G14 G15 G16 ;
G21 G22 G23 G24 G25 G26 ;
G31 G32 G33 G34 G35 G36 ;
G41 G42 G43 G44 G45 G46 ;
G51 G52 G53 G54 G55 G56 ;
G61 G62 G63 G64 G65 G66 ])

G=subs([G11 G12 G13 G14 G15 G16 ;
G21 G22 G23 G24 G25 G26 ;
G31 G32 G33 G34 G35 G36 ;
G41 G42 G43 G44 G45 G46 ;
G51 G52 G53 G54 G55 G56 ;
G61 G62 G63 G64 G65 G66 ])

pretty(G)

s = tf(’s’) % Make Generic Transfer Function
Simple

[filas ,columnas ]=size(G);% rows and columns of
matrix G ( Various Func. Transf )

Gtf = tf(zeros(size(G)));
for fil=1: filas

for col =1: columnas
Gtf(fil ,col)=eval(char(G(fil ,col)));
end

end

% First way to obtain State Spaces matrices (ss)
Gss = ss(Gtf)
A = Gss.A;
B = Gss.B;
C = Gss.C;
D = Gss.D;

%% Simulation using Euler - FOR Loop (Fast with
preallocating zeros)
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tic
close all;
tf = 0.1; % simulation end time
ts = 1e-6; % simulation steps: ts =1/4.*( p) where

p: poles -> eig(A)
t = 0:ts:tf; % time range vector
x = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ;

0];%State Initial Values Vector
Estados = zeros(length(x),length(t) -1); % Vector of

zeros assigned to states
U = zeros(6,length(t) -1); %Zeros vector assigned

to Inputs
Salidas = zeros(6,length(t) -1); %Zeros vector

assigned to Outputs
Wr = zeros(6,length(t) -1); %Zeros vector assigned

to Frequency
w0=2*pi*60; % value as a function of frequency
u0 =155; % Initial voltage magnitude
phase =2*pi/3; %Phase =120
ph1 =0; % Input 1 phase range
ph2 =0:0.05:0.5; % Input 2 phase range
opt =1;%opt =2;

% P1_3frms = zeros (1, length (ph2));
% P2_3frms = zeros (1, length (ph2));
for sim = 1: length(ph2) % number iterations

according to the phase
for k = 1: length(t)-1 % number iterations

according to time

u1a = real(u0*exp(1i*(w0*k*ts)+1i*(0+ ph1))); %
Input 1a voltage value

u1b = real(u0*exp(1i*(w0*k*ts)+1i*( phase+ph1)));
% Input 1b voltage value

u1c = real(u0*exp(1i*(w0*k*ts)+1i*(2* phase+ph1))
); % Input 1c voltage value

u2a = real(u0*exp(1i*(w0*k*ts)+1i*(0+ ph2(sim))))
; % Input 2a voltage value

u2b = real(u0*exp(1i*(w0*k*ts)+1i*( phase+ph2(sim
)))); % Input 2b voltage value

u2c = real(u0*exp(1i*(w0*k*ts)+1i*(2* phase+ph2(
sim)))); % Input 2c voltage value
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u = [u1a ; u1b ; u1c ; u2a ; u2b ; u2c]; %
inputs vector

%STATE EQUATION
x = x + ts*(A*x + B*u); % Euler: x(k+1) = x(k) +

ts*(dx/dt)
% where: dx/dt = A*x + B*u

% OUTPUT EQUATION
I = C*x;

Estados(:,k) = x; % Values of state variables
U(:,k) = u; % Input values ( voltage )
Salidas(:,k) = I; % Values of output variables (

Current )
Wr(:,k) = w0; % Values of frequency variables
end

P = Salidas .*U; % Active Power (Power= Current .*
Voltage )

P1_3f = P(1,:)+P(2,:)+P(3,:); %Three Phase
Active Power 1

P2_3f = P(4,:)+P(5,:)+P(6,:); %Three Phase
Active Power 2

if (sim == 1) || (sim == length(ph2))

if opt == 1
%%%%%%%%%% - - INDIVIDUAL PLOT ::V1 - -%%%%%%%%%

figure ();
plot ((0: length(t) -2)*ts,Salidas (1,:) ,(0: length(t)

-2)*ts ,Salidas (2,:) ,(0: length(t) -2)*ts,Salidas
(3,:),’LineWidth ’ ,2);

%title(’Outputs ’);
xlabel(’Time␣(s)’); ylabel(’Current␣(A)’);
legend(’I_{1a}’,’I_{1b}’,’I_{1c}’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
if sim == 1, saveas(gcf ,’3

f_v1_corrientes_primera_viguales_desfase ’,’epsc
’); end
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if sim == length(ph2), saveas(gcf ,’3
f_v1_corrientes_ultima_viguales_desfase ’,’epsc’
); end

figure ();
plot ((0: length(t) -2)*ts,U(1,:),’r-’ ,(0: length(t)

-2)*ts ,U(2,:),’b-’ ,(0: length(t) -2)*ts,U(3,:),’g
-’,’LineWidth ’ ,2);

%title(’Inputs ’);
xlabel(’Time␣(s)’); ylabel(’Voltage␣(V)’);
legend(’V_{1a}’,’V_{1b}’,’V_{1c}’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
if sim == 1, saveas(gcf ,’3

f_v1_voltajes_primera_viguales_desfase ’,’epsc’)
; end

if sim == length(ph2), saveas(gcf ,’3
f_v1_voltajes_ultima_viguales_desfase ’,’epsc’);

end
figure ();
plot ((0: length(t) -2)*ts,P1_3f ,’k-’ ,(0: length(t) -2)

*ts ,P2_3f ,’m-’,’LineWidth ’ ,2);
%title(’Powers ’);
xlabel(’Time␣(s)’); ylabel(’Active␣Power␣(W)’);
legend(’P_{1␣3\phi}’,’P_{2␣3\phi}’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
if sim == 1, saveas(gcf ,’3

f_potencias_primera_viguales_desfase ’,’epsc’);
end

if sim == length(ph2), saveas(gcf ,’3
f_potencias_ultima_viguales_desfase ’,’epsc’);
end

% %%%%%%%%%%%%%%%%%%
end
if opt == 2

%%%%%%%%% - - INDIVIDUAL PLOT ::V2 - -%%%%%%%%%%%
figure ();
plot ((0: length(t) -2)*ts,Salidas (4,:) ,(0: length(t)

-2)*ts ,Salidas (5,:) ,(0: length(t) -2)*ts,Salidas
(6,:),’LineWidth ’ ,2);

%title(’Outputs ’);
xlabel(’Time␣(s)’); ylabel(’Current␣(A)’);
legend(’I_{2a}’,’I_{2b}’,’I_{2c}’,’Orientation ’,’

horizontal ’);
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grid on;axis fill;set(gca ,’Fontsize ’ ,15);
if sim == 1, saveas(gcf ,’3

f_v2_corrientes_primera_viguales_desfase ’,’epsc
’); end

if sim == length(ph2), saveas(gcf ,’3
f_v2_corrientes_ultima_viguales_desfase ’,’epsc’
); end

figure ();
plot ((0: length(t) -2)*ts,U(4,:),’r-’ ,(0: length(t)

-2)*ts ,U(5,:),’b-’ ,(0: length(t) -2)*ts,U(6,:),’g
-’,’LineWidth ’ ,2);

%title(’Inputs ’);
xlabel(’Time␣(s)’); ylabel(’Voltage␣(V)’);
legend(’V_{2a}’,’V_{2b}’,’V_{2c}’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
if sim == 1, saveas(gcf ,’3

f_v2_voltajes_primera_viguales_desfase ’,’epsc’)
; end

if sim == length(ph2), saveas(gcf ,’3
f_v2_voltajes_ultima_viguales_desfase ’,’epsc’);

end
figure ();
plot ((0: length(t) -2)*ts,P1_3f ,’k-’ ,(0: length(t) -2)

*ts ,P2_3f ,’m-’,’LineWidth ’ ,2);
%title(’Powers ’);
xlabel(’Time␣(s)’); ylabel(’Active␣Power␣(W)’);
legend(’P_{1␣3\phi}’,’P_{2␣3\phi}’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
if sim == 1, saveas(gcf ,’3

f_potencias_primera_viguales_desfase ’,’epsc’);
end

if sim == length(ph2), saveas(gcf ,’3
f_potencias_ultima_viguales_desfase ’,’epsc’);
end

% %%%%%%%%%%%%%%%%%
end

end
end
toc
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7.1.3 Complex-based MG three-phase model Matlab script

tic
clc;
close all;
clear all;

R1 =0.5;
R2=10;
RL=2;
L1=2e-2;
L2=1e-2;

step=1e-6;% simulation steps
t_fin =0.1; % simulation end time
steps=ceil(t_fin/step);% time range vector
S1=zeros(1,steps);% Vector of zeros assigned to Power

1
S2=zeros(1,steps);% Vector of zeros assigned to Power

2
wr=zeros(2,steps);% Vector of zeros assigned to

Frequency

t=0;% Initial time
droop1 =0; droop2 =0;%Droop control selector (ON/OFF)
m=1e-3;n=0*1e-3;%Static -droop gains
s1=0;% Initial Power 1
s2=0;% Initial Power 2
E1 =155;E2 =155;E0 =155;% Nominal Voltage
w1=2*pi*60;w2=2*pi*60;w0=2*pi*60;% Nominal Frequency
e1=E1*exp(1i*(w1*t));% Voltage 1 equation
e2=E2*exp(1i*(w2*t));% Voltage 2 equation
dw1=0;dw2=0;% Frequency variation
dE1=0;dE2=0;% Voltage variation
randomizator=@() rand (1,2) >=0.5
ph1=0;ph2=0;% Initial phase

for i=1: steps

S1(i)=s1;
S2(i)=s2;
E2_old=E2;E1_old=E1;
ph1_old=ph1;
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ph2_old=ph2;
t=t+step;
if (mod(t,100e-6)<step)

real(s1)
real(s2)

end

wr(:,i)=[w1;w2]; % Values of Frequency 1 & 2

ph1=ph1+w1*step; % Values of phase 1
ph2=ph2+w2*step; % Values of phase 2
e1=E1*exp(1i*(ph1)); % Values of voltage 1
e2=E2*exp(1i*(ph2)); % Values of voltage 2
dp1=(ph1 -ph1_old)/step; % Values of phase variation 1
dp2=(ph2 -ph2_old)/step; % Values of phase variation 2
dE2=(E2 -E2_old)/step; % Values of voltage variation 2
dE1=(E1 -E1_old)/step; % Values of voltage variation 1
%Complex -based equations system
ds1=(dE1/E1 -(RL+R1)/L1+1i*(dp1))*s1 +(3/2)*E1^2/L1-RL

/L1*s2*e1/e2;
ds2=(dE2/E2 -(RL+R2)/L2+1i*(dp2))*s2 +(3/2)*E2^2/L2-RL

/L2*s1*e2/e1;

dE1=0;dE2=0; %zero voltage variation
s1=s1+ds1*step; % Values of Power 1
s2=s2+ds2*step; % Values of Power 2

end
%%%%%%%%% - - INDIVIDUAL PLOT - -%%%%%%%%%
figure(’Name’,’Complex␣Model:␣Active␣Power ’,’

NumberTitle ’,’off’);
plot ((0: steps -1)*step ,real(S1),’LineWidth ’ ,2)
hold(’on’)
plot ((0: steps -1)*step ,real(S2),’LineWidth ’ ,2)
%title(’ Complex Model ’);
xlabel(’Time␣(s)’); ylabel(’Active␣Power␣(W)’);
legend(’P_{1_{(3\ phi)}}’,’P_{2_{(3\ phi)}}’,’

Orientation ’,’horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’

complex_potencias_activ_prim_viguales_desfase ’,’
epsc’);
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hold off;
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(’Name’,’Complex␣Model:␣Reactive␣Power ’,’

NumberTitle ’,’off’);
plot ((0: steps -1)*step ,imag(S1),’b-’,’LineWidth ’ ,2)
hold(’on’)
plot ((0: steps -1)*step ,imag(S2),’r-’,’LineWidth ’ ,2)
%title(’ Complex Model ’);
xlabel(’Time␣(s)’); ylabel(’Reactive␣Power␣(VAR)’);
legend(’Q_{1_{(3\ phi)}}’,’Q_{2_{(3\ phi)}}’,’

Orientation ’,’horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’

complex_potencias_react_prim_viguales_desfase ’,’
epsc’);

hold off;
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(’Name’,’Complex␣Model:␣Frequency ’,’

NumberTitle ’,’off’);
plot ((0: steps -1)*step ,wr(1,:),’c-’,’LineWidth ’ ,2)
hold(’on’)
plot ((0: steps -1)*step ,wr(2,:),’m-’,’LineWidth ’ ,2)
%title(’ Complex Model ’);
xlabel(’Time␣(s)’); ylabel(’Frequency␣(rad/s)’);
legend(’\omega_1 ’,’\omega_2 ’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’complex_frec_prim_viguales_desfase ’,’

epsc’);
hold off;
toc

7.1.4 Complex-based MG three-phase model equilibrium points
Matlab script

syms dE1 dE2 E1 E2 dp1 dp2 t p1 p2 AP s1 s2 e1 e2
R1 R2 RL L1 L2 w

dE1 =0;dE2=0;% Voltage variation
dp1 =0;dp2=0;%Phase variation
e1=E1*exp(1i*(w)*t+p1*1i);% Voltage 1
e2=E2*exp(1i*(w)*t+p2*1i);% Voltage 2
%AP=p1 -p2;
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ds1=(-(RL+R1)/L1+1i*w)*s1 +(3/2)*E1^2/L1 -RL/L1*s2*
E1/E2*exp(1i*(AP)) == 0;

ds2=(-(RL+R2)/L2+1i*w)*s2 +(3/2)*E2^2/L2 -RL/L2*s1*
E2/E1*exp(1i*(-AP)) == 0;

[s1e ,s2e]=solve ([ds1;ds2],[s1 s2])% Equilibrium
Points Solve

Seqn1 = solve(s1e -s2e ,[E1 E2])%Eq. Points
depending on voltages

Seqn2 = solve(s1e -s2e ,AP)%Eq. Points depending on
phases

R1 =0.5;% Resistor Inv. 1
R2=10;% Resistor Inv. 2
RL=2;% Resistor Load
L1=2e-2;% Inductor Inv. 1
L2=1e-2;% Inductor Inv. 2
E1 =155;% Voltage magnitude 1
E2 =155;% Voltage magnitude 2
w=2*pi*60;%phase -> frecuency

vpa(subs(subs(s1e),AP ,subs(Seqn2 (1))))% simplify E.
P 1 numeric sol. en Pot 1

vpa(subs(subs(s2e),AP ,subs(Seqn2 (1))))% simplify E.
P 1 numeric sol. en Pot 2

vpa(subs(subs(s1e),AP ,subs(Seqn2 (2))))% simplify E.
P 2 numeric sol. en Pot 1

vpa(subs(subs(s2e),AP ,subs(Seqn2 (2))))% simplify E.
P 2 numeric sol. en Pot 2

7.1.5 Complex-based MG three-phase model droop control Mat-
lab script

tic
clc;
close all;
clear all;

R1 =0.5;
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R2=10;
RL=2;
L1=2e-2;
L2=1e-2;

step=1e-6;% simulation steps
t_fin =0.5; % simulation end time
steps=ceil(t_fin/step);% time range vector
S1=zeros(1,steps);% Vector of zeros assigned to

Power 1
S2=zeros(1,steps);% Vector of zeros assigned to

Power 2
wr=zeros(2,steps);% Vector of zeros assigned to

Frequency

t=0;% Initial time
droop1 =1; droop2 =1;%Droop control selector (ON/OFF)
m=1e-3;n=0*1e-3;%Static -droop gains
s1=0;% Initial Power 1
s2=0;% Initial Power 2
E1 =155;E2 =155;E0 =155;% Nominal Voltage
w1=2*pi*60;w2=2*pi*60;w0=2*pi*60;% Nominal

Frequency
e1=E1*exp(1i*(w1*t));% Voltage 1 equation
e2=E2*exp(1i*(w2*t));% Voltage 2 equation
dw1 =0;dw2=0;% Frequency variation
dE1 =0;dE2=0;% Voltage variation
randomizator=@() rand (1,2) >=0.5
ph1 =0;ph2=0;% Initial phase

for i=1: steps

S1(i)=s1;
S2(i)=s2;
E2_old=E2;E1_old=E1;
ph1_old=ph1;
ph2_old=ph2;
t=t+step;
if (mod(t,100e-6)<step)

real(s1)
real(s2)
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if droop1 %Droop control loop Inverter 1
E1=E0 -n*(imag(s1)); %V-Q control 1
w1=w0 -20*m*(real(s1)); %f-P control 1
end
if droop2 %Droop control loop Inverter 2
E2=E0 -n*(imag(s2)); %V-Q control 2
w2=w0 -20*m*(real(s2)); %f-P control 2
end

end

wr(:,i)=[w1;w2]; % Values of Frequency 1 & 2

ph1=ph1+w1*step; % Values of phase 1
ph2=ph2+w2*step; % Values of phase 2
e1=E1*exp(1i*(ph1)); % Values of voltage 1
e2=E2*exp(1i*(ph2)); % Values of voltage 2
dp1=(ph1 -ph1_old)/step; % Values of phase variation

1
dp2=(ph2 -ph2_old)/step; % Values of phase variation

2
dE2=(E2 -E2_old)/step; % Values of voltage variation

2
dE1=(E1 -E1_old)/step; % Values of voltage variation

1
%Complex -based equations system
ds1=(dE1/E1 -(RL+R1)/L1+1i*(dp1))*s1 +(3/2)*E1^2/L1-

RL/L1*s2*e1/e2;
ds2=(dE2/E2 -(RL+R2)/L2+1i*(dp2))*s2 +(3/2)*E2^2/L2-

RL/L2*s1*e2/e1;

dE1 =0;dE2=0; %zero voltage variation
s1=s1+ds1*step; % Values of Power 1
s2=s2+ds2*step; % Values of Power 2

end
%%%%%%%%% - - INDIVIDUAL PLOT - -%%%%%%%%%
figure(’Name’,’Complex␣Model:␣Active␣Power ’,’

NumberTitle ’,’off’);
plot ((0: steps -1)*step ,real(S1),’LineWidth ’ ,2)
hold(’on’)
plot ((0: steps -1)*step ,real(S2),’LineWidth ’ ,2)
%title(’ Complex Model ’);
xlabel(’Time␣(s)’); ylabel(’Active␣Power␣(W)’);
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legend(’P_{1_{(3\ phi)}}’,’P_{2_{(3\ phi)}}’,’
Orientation ’,’horizontal ’);

grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’droop_comp_pot_activ_prim_viguales ’,’

epsc’);
hold off;
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(’Name’,’Complex␣Model:␣Reactive␣Power ’,’

NumberTitle ’,’off’);
plot ((0: steps -1)*step ,imag(S1),’b-’,’LineWidth ’ ,2)
hold(’on’)
plot ((0: steps -1)*step ,imag(S2),’r-’,’LineWidth ’ ,2)
%title(’ Complex Model ’);
xlabel(’Time␣(s)’); ylabel(’Reactive␣Power␣(VAR)’)

;
legend(’Q_{1_{(3\ phi)}}’,’Q_{2_{(3\ phi)}}’,’

Orientation ’,’horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’droop_comp_pot_react_prim_viguales ’,’

epsc’);
hold off;
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(’Name’,’Complex␣Model:␣Frequency ’,’

NumberTitle ’,’off’);
plot ((0: steps -1)*step ,wr(1,:),’c-’,’LineWidth ’ ,2)
hold(’on’)
plot ((0: steps -1)*step ,wr(2,:),’m-’,’LineWidth ’ ,2)
%title(’ Complex Model ’);
xlabel(’Time␣(s)’); ylabel(’Frequency␣(rad/s)’);
legend(’\omega_1 ’,’\omega_2 ’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’droop_comp_frec_prim_viguales ’,’epsc’)

;
hold off;
toc

7.1.6 MNA-based MG three-phase model droop control Matlab
script

clc;
clear all;
fname =" ModeloMicrorredElectrico_3FASE.cir";
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scam;

R1a = 0.5;
R1b = 0.5;
R1c = 0.5;
R2a = 10;
R2b = 10;
R2c = 10;
L1a = 2e-2;
L1b = 2e-2;
L1c = 2e-2;
L2a = 1e-2;
L2b = 1e-2;
L2c = 1e-2;
RLa = 2;
RLb = 2;
RLc = 2;

G1a = -I_V1a
G1b = -I_V1b
G1c = -I_V1c
G2a = -I_V2a
G2b = -I_V2b
G2c = -I_V2c

G1a = collect(G1a ,[V1a V2a])
G1b = collect(G1b ,[V1b V2b])
G1c = collect(G1c ,[V1c V2c])
G2a = collect(G2a ,[V1a V2a])
G2b = collect(G2b ,[V1b V2b])
G2c = collect(G2c ,[V1c V2c])
% %%%%%%%%%%%%%%%%%%%%%%%
G11 = coeffs(G1a ,V1a)
G11 = G11(1,2)

%G12 = coeffs (G1a ,V1b)
G12 = 0;

%G13 = coeffs (G1a ,V1c)
G13 = 0;

G14 = coeffs(G1a ,V2a)
G14 = G14(1,2)
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%G15 = coeffs (G1a ,V2b)
G15 = 0;

%G16 = coeffs (G1a ,V2c)
G16 = 0;
% %%%%%%%%%%%%%%%%%%%%%%%
%G21 = coeffs (G1b ,V1a)
G21 = 0;

G22 = coeffs(G1b ,V1b)
G22 = G22(1,2)

%G23 = coeffs (G1b ,V1c)
G23 = 0;

%G24 = coeffs (G1b ,V2a)
G24 = 0;

G25 = coeffs(G1b ,V2b)
G25 = G25(1,2)

%G26 = coeffs (G1b ,V2c)
G26 = 0;
% %%%%%%%%%%%%%%%%%%%%%%
%G31 = coeffs (G1c ,V1a)
G31 = 0;

%G32 = coeffs (G1c ,V1b)
G32 = 0;

G33 = coeffs(G1c ,V1c)
G33 = G33(1,2)

%G34 = coeffs (G1c ,V2a)
G34 = 0;

%G35 = coeffs (G1c ,V2b)
G35 = 0;

G36 = coeffs(G1c ,V2c)
G36 = G36(1,2)
% %%%%%%%%%%%%%%%%%%%%%%
G41 = coeffs(G2a ,V1a)
G41 = G41(1,2)
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%G42 = coeffs (G2a ,V1b)
G42 = 0;

%G43 = coeffs (G2a ,V1c)
G43 = 0;

G44 = coeffs(G2a ,V2a)
G44 = G44(1,2)

%G45 = coeffs (G2a ,V2b)
G45 = 0;

%G46 = coeffs (G2a ,V2c)
G46 = 0;
% %%%%%%%%%%%%%%%%%%%%%%
%G51 = coeffs (G2b ,V1a)
G51 = 0;

G52 = coeffs(G2b ,V1b)
G52 = G52(1,2)

%G53 = coeffs (G2b ,V1c)
G53 = 0;

%G54 = coeffs (G2b ,V2a)
G54 = 0;

G55 = coeffs(G2b ,V2b)
G55 = G55(1,2)

%G56 = coeffs (G2b ,V2c)
G56 = 0;
% %%%%%%%%%%%%%%%%%%%%%%
%G61 = coeffs (G2c ,V1a)
G61 = 0;

%G62 = coeffs (G2c ,V1b)
G62 = 0;

G63 = coeffs(G2c ,V1c)
G63 = G63(1,2)

%G64 = coeffs (G2c ,V2a)
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G64 = 0;

%G65 = coeffs (G2c ,V2b)
G65 = 0;

G66 = coeffs(G2c ,V2c)
G66 = G66(1,2)
% %%%%%%%%%%%%%%%%%%%%

pretty ([G11 G12 G13 G14 G15 G16 ;
G21 G22 G23 G24 G25 G26 ;
G31 G32 G33 G34 G35 G36 ;
G41 G42 G43 G44 G45 G46 ;
G51 G52 G53 G54 G55 G56 ;
G61 G62 G63 G64 G65 G66 ])

G=subs([G11 G12 G13 G14 G15 G16 ;
G21 G22 G23 G24 G25 G26 ;
G31 G32 G33 G34 G35 G36 ;
G41 G42 G43 G44 G45 G46 ;
G51 G52 G53 G54 G55 G56 ;
G61 G62 G63 G64 G65 G66 ])

pretty(G)

s = tf(’s’) % Make Generic Transfer Function
Simple

[filas ,columnas ]=size(G);% rows and columns of
matrix G ( Various Func. Transf )

Gtf = tf(zeros(size(G)));
for fil=1: filas
for col=1: columnas
Gtf(fil ,col)=eval(char(G(fil ,col)));
end
end

% First way to obtain State Spaces matrices (ss)
Gss = ss(Gtf)
A = Gss.A;
B = Gss.B;
C = Gss.C;
D = Gss.D;
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%% Simulation using Euler - FOR Loop (Fast with
preallocating zeros)

tic
close all;
tf = 0.5; % simulation end time
ts = 1e-6; % simulation steps: ts =1/4.*( p) where

p: poles -> eig(A)
steps=ceil(tf/ts);% time range vector
x = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ;

0];%State Initial Values Vector
Estados = zeros(length(x),steps); % Vector of zeros

assigned to states
U = zeros(6,steps); %Zeros vector assigned to

Inputs
Salidas = zeros(6,steps); %Zeros vector assigned

to Outputs
w0=2*pi*60; % nominal value as a function of

frequency
u0 =155; % nominal voltage magnitude
phase =2*pi/3; %Phase 120
m=1e-3;n=0*1e-3;
w1=w0;w2=w0;% initial frequency 1 & 2
u1=u0;u2=u0;% initial voltage 1 & 2
Ps = zeros(2,steps); %Zeros vector assigned to

Active Power
Qs = zeros(2,steps); %Zeros vector assigned to

Reactive Power
Us = zeros(2,steps); %Zeros vector assigned to

Inputs
W = zeros(2,steps); %Zeros vector assigned to

Frequency
tsim =0;% Initial simulation time
[Ad,Bd]=c2d(A,B,ts);% Continuous2Discrete

Conversion
ph1 =0; % initial phase 1
ph2 =0; % initial phase 2
opt =1;%1 or 2;% Selector graphics inverter 1 & 2
droop =1;% Selector droop control ON/OFF

for k = 1: steps % number iterations according to
time

tsim=tsim+ts;
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ph1=ph1+w1*ts; % Values of phase 1
ph2=ph2+w2*ts; % Values of phase 2

u1a = (u1*exp(1i*(ph1)+1i*(0))); % Input 1a
voltage value

u1b = (u1*exp(1i*(ph1)+1i*( phase))); % Input 1b
voltage value

u1c = (u1*exp(1i*(ph1)+1i*(2* phase))); % Input 1c
voltage value

u2a = (u2*exp(1i*(ph2)+1i*(0))); % Input 2a
voltage value

u2b = (u2*exp(1i*(ph2)+1i*( phase))); % Input 2b
voltage value

u2c = (u2*exp(1i*(ph2)+1i*(2* phase))); % Input 2c
voltage value

u = ([u1a ; u1b ; u1c ; u2a ; u2b ; u2c]);

%STATE EQUATION :
% Continuous :
%x = x + ts*(A*x + B*real(u)); % Euler: x(k+1) = x

(k) + ts*(dx/dt) where: dx/dt = A*x + B*u
% Discrete :
x = Ad*x + Bd*real(u);

% OUTPUT EQUATION
I = C*x;

p1=I(1:3) ’*real(u(1:3));%Three -phase Active Power
1

p2=I(4:6) ’*real(u(4:6));%Three -phase Active Power
2

q1 = I(1:3) ’*imag(u(1:3));%Three -phase Reactive
Power 1

q2 = I(4:6) ’*imag(u(4:6));%Three -phase Reactive
Power 2

Ps(:,k)=[p1;p2];% Active Power vector 1 & 2
Qs(:,k)=[q1;q2];% Reactive Power vector 1 & 2

if droop %Droop Control Loop
w1= w0 - 20*m*p1; %f-P control 1
w2= w0 - 20*m*p2; %f-P control 2
u1 = u0 - n*q1; %V-Q control 1
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u2 = u0 - n*q2; %V-Q control 2
end

Estados(:,k) = x; % Values of state variables
U(:,k) = real(u); % Input values ( voltages )
Us(:,k) = [u1;u2]; % Input values ( voltage 1 & 2)
Salidas(:,k) = I; % Values of output variables (

Currents )
W(:,k) = [w1;w2]; % Values of frequency variables
end
if opt == 1
%%%%%%%% - - INDIVIDUAL PLOT ::V1 - -%%%%%%%%%
figure ();
plot ((0: steps -1)*ts ,Salidas (1,:) ,(0:steps -1)*ts ,

Salidas (2,:) ,(0:steps -1)*ts ,Salidas (3,:),’
LineWidth ’ ,2);

%title(’Outputs ’);
xlabel(’Time␣(s)’); ylabel(’Current␣(A)’);
legend(’I_{1a}’,’I_{1b}’,’I_{1c}’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’3

f_droop_v1_corrientes_primera_viguales_desfase ’
,’epsc’);

figure ();
plot ((0: steps -1)*ts ,U(1,:),’r-’ ,(0:steps -1)*ts ,U

(2,:),’b-’ ,(0:steps -1)*ts ,U(3,:),’g-’,’
LineWidth ’ ,2);

%title(’Inputs ’);
xlabel(’Time␣(s)’); ylabel(’Voltage␣(V)’);
legend(’V_{1a}’,’V_{1b}’,’V_{1c}’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’3

f_droop_v1_voltajes_primera_viguales_desfase ’,’
epsc’);

figure ();
plot ((0: steps -1)*ts ,Ps(1,:),’k-’ ,(0:steps -1)*ts ,Ps

(2,:),’m-’,’LineWidth ’ ,2);
%title(’Powers ’);
xlabel(’Time␣(s)’); ylabel(’Active␣Power␣(W)’);
legend(’P_{1_{3\phi}}’,’P_{2_{3\phi}}’,’

Orientation ’,’horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
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saveas(gcf ,’3
f_droop_Ppotencias_primera_viguales_desfase ’,’
epsc’);

figure ();
plot ((0: steps -1)*ts ,Qs(1,:),’b-’ ,(0:steps -1)*ts ,Qs

(2,:),’r-’,’LineWidth ’ ,2);
%title(’Powers ’);
xlabel(’Time␣(s)’); ylabel(’Reactive␣Power␣(VAR)’)

;
legend(’Q_{1_{3\phi}}’,’Q_{2_{3\phi}}’,’

Orientation ’,’horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’3

f_droop_Qpotencias_primera_viguales_desfase ’,’
epsc’);

figure ();
plot ((0: steps -1)*ts ,W(1,:) ,(0:steps -1)*ts ,W(2,:),’

LineWidth ’ ,2);
%title(’Frequencys ’);
xlabel(’Time␣(s)’); ylabel(’Frequency␣(rad/s)’);
legend(’\omega_1 ’,’\omega_2 ’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’3f_droop_Freq_primera_viguales_desfase

’,’epsc’);
end
if opt == 2
%%%%%%%% - - INDIVIDUAL PLOT ::V2 - -%%%%%%%%%
figure ();
plot ((0: steps -1)*ts ,Salidas (4,:) ,(0:steps -1)*ts ,

Salidas (5,:) ,(0:steps -1)*ts ,Salidas (6,:),’
LineWidth ’ ,2);

%title(’Outputs ’);
xlabel(’Time␣(s)’); ylabel(’Current␣(A)’);
legend(’I_{2a}’,’I_{2b}’,’I_{2c}’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’3

f_droop_v2_corrientes_primera_viguales_desfase ’
,’epsc’);

figure ();
plot ((0: steps -1)*ts ,U(4,:),’r-’ ,(0:steps -1)*ts ,U

(5,:),’b-’ ,(0:steps -1)*ts ,U(6,:),’g-’,’
LineWidth ’ ,2);
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%title(’Inputs ’);
xlabel(’Time␣(s)’); ylabel(’Voltage␣(V)’);
legend(’V_{2a}’,’V_{2b}’,’V_{2c}’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’3

f_droop_v2_voltajes_primera_viguales_desfase ’,’
epsc’);

figure ();
plot ((0: steps -1)*ts ,Ps(1,:),’k-’ ,(0:steps -1)*ts ,Ps

(2,:),’m-’,’LineWidth ’ ,2);
%title(’Powers ’);
xlabel(’Time␣(s)’); ylabel(’Active␣Power␣(W)’);
legend(’P_{1_{3\phi}}’,’P_{2_{3\phi}}’,’

Orientation ’,’horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’3

f_droop_Ppotencias_primera_viguales_desfase ’,’
epsc’);

figure ();
plot ((0: steps -1)*ts ,Qs(1,:),’b-’ ,(0:steps -1)*ts ,Qs

(2,:),’r-’,’LineWidth ’ ,2);
%title(’Powers ’);
xlabel(’Time␣(s)’); ylabel(’Reactive␣Power␣(VAR)’)

;
legend(’Q_{1_{3\phi}}’,’Q_{2_{3\phi}}’,’

Orientation ’,’horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’3

f_droop_Qpotencias_primera_viguales_desfase ’,’
epsc’);

figure ();
plot ((0: steps -1)*ts ,W(1,:) ,(0:steps -1)*ts ,W(2,:),’

LineWidth ’ ,2);
%title(’Frequencys ’);
xlabel(’Time␣(s)’); ylabel(’Frequency␣(rad/s)’);
legend(’\omega_1 ’,’\omega_2 ’,’Orientation ’,’

horizontal ’);
grid on;axis fill;set(gca ,’Fontsize ’ ,15);
saveas(gcf ,’3f_droop_Freq_primera_viguales_desfase

’,’epsc’);
end
toc
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